BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12883867)

  • 1. Development of a biosensor for on-line detection of tributyltin with a recombinant bioluminescent Escherichia coli strain.
    Thouand G; Horry H; Durand MJ; Picart P; Bendriaa L; Daniel P; DuBow MS
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):218-25. PubMed ID: 12883867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a biosensor for the detection of tributyltin.
    Horry H; Durand MJ; Picart P; Bendriaa L; Daniel P; Thouand G
    Environ Toxicol; 2004 Aug; 19(4):342-5. PubMed ID: 15269905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor.
    Affi M; Solliec C; Legentilhomme P; Comiti J; Legrand J; Jouanneau S; Thouand G
    Anal Bioanal Chem; 2016 Dec; 408(30):8761-8770. PubMed ID: 27040532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable-light-emitting Escherichia coli as a biosensor.
    Korpela M; Mäntsälä P; Lilius EM; Karp M
    J Biolumin Chemilumin; 1989 Jul; 4(1):551-4. PubMed ID: 2678927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the spectral emission of lux recombinant and bioluminescent marine bacteria.
    Thouand G; Daniel P; Horry H; Picart P; Durand MJ; Killham K; Knox OG; DuBow MS; Rousseau M
    Luminescence; 2003; 18(3):145-55. PubMed ID: 12701090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor.
    Charrier T; Chapeau C; Bendria L; Picart P; Daniel P; Thouand G
    Anal Bioanal Chem; 2011 May; 400(4):1061-70. PubMed ID: 21061000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific detection of organotin compounds with a recombinant luminescent bacteria.
    Durand MJ; Thouand G; Dancheva-Ivanova T; Vachon P; DuBow M
    Chemosphere; 2003 Jul; 52(1):103-11. PubMed ID: 12729692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suitability of Macrolampis firefly and Pyrearinus click beetle luciferases for bacterial light off toxicity biosensor.
    Gabriel GV; Lopes PS; Viviani VR
    Anal Biochem; 2014 Jan; 445():73-9. PubMed ID: 24071473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A miniature bioreactor for sensing toxicity using recombinant bioluminescent Escherichia coli cells.
    Gu MB; Dhurjati PS; Van Dyk TK; LaRossa RA
    Biotechnol Prog; 1996; 12(3):393-7. PubMed ID: 8652123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress detection using bioluminescent reporters of the heat-shock response.
    Van Dyk TK
    Methods Mol Biol; 1998; 102():153-60. PubMed ID: 9680617
    [No Abstract]   [Full Text] [Related]  

  • 11. A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium.
    Gil GC; Mitchell RJ; Chang ST; Gu MB
    Biosens Bioelectron; 2000 Mar; 15(1-2):23-30. PubMed ID: 10826640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the stress response of a bioluminescent biological sensor in batch and continuous cultures.
    Rupani SP; Gu MB; Konstantinov KB; Dhurjati PS; Van Dyk TK; LaRossa RA
    Biotechnol Prog; 1996; 12(3):387-92. PubMed ID: 8652122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-channel continuous toxicity monitoring system using recombinant bioluminescent bacteria for classification of toxicity.
    Gu MB; Gil GC
    Biosens Bioelectron; 2001 Dec; 16(9-12):661-6. PubMed ID: 11679242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioluminescent liquid light guide pad biosensor for indoor air toxicity monitoring.
    Eltzov E; Cohen A; Marks RS
    Anal Chem; 2015 Apr; 87(7):3655-61. PubMed ID: 25775008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a high throughput toxicity biosensor and comparison with a Daphnia magna bioassay.
    Kim BC; Park KS; Kim SD; Gu MB
    Biosens Bioelectron; 2003 May; 18(5-6):821-6. PubMed ID: 12706597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Photoquenching of the bioluminescence of the genetically engineered Escherichia coli TG1 (pXen7) strain in the presence of photodithazine].
    Strakhovskaia MG; Parkhomenko IM; Rumbal' IaV; Zarubina AP; Danilov VS; Stranadko EF
    Mikrobiologiia; 2002; 71(3):345-8. PubMed ID: 12138755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity.
    Jung I; Seo HB; Lee JE; Kim BC; Gu MB
    Analyst; 2014 Sep; 139(18):4696-701. PubMed ID: 25057512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and measurement of a whole-cell bioluminescent biosensor based on a single photon avalanche diode.
    Daniel R; Almog R; Ron A; Belkin S; Diamand YS
    Biosens Bioelectron; 2008 Dec; 24(4):888-93. PubMed ID: 18774705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preconcentration and detection of mercury with bioluminescent bioreporter E. coli ARL1.
    Solovyev AI; Koštejn M; Kuncova G; Dostálek P; Rohovec J; Navrátil T
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8793-802. PubMed ID: 26099333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria.
    Choi SH; Gu MB
    Biosens Bioelectron; 2002 May; 17(5):433-40. PubMed ID: 11888734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.