BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 12884271)

  • 1. Chloride cell responses to ion challenge in two tropical freshwater fish, the erythrinids Hoplias malabaricus and Hoplerythrinus unitaeniatus.
    Moron SE; Oba ET; De Andrade CA; Fernandes MN
    J Exp Zool A Comp Exp Biol; 2003 Aug; 298(2):93-104. PubMed ID: 12884271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The distribution of mitochondria-rich cells in the gills of air-breathing fishes.
    Lin HC; Sung WT
    Physiol Biochem Zool; 2003; 76(2):215-28. PubMed ID: 12794675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transition from water-breathing to air-breathing is associated with a shift in ion uptake from gills to gut: a study of two closely related erythrinid teleosts, Hoplerythrinus unitaeniatus and Hoplias malabaricus.
    Wood CM; Pelster B; Giacomin M; Sadauskas-Henrique H; Almeida-Val VM; Val AL
    J Comp Physiol B; 2016 May; 186(4):431-45. PubMed ID: 26857274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Branchial osmoregulatory response to salinity in the gilthead sea bream, Sparus auratus.
    Laiz-Carrión R; Guerreiro PM; Fuentes J; Canario AV; Martín Del Río MP; Mancera JM
    J Exp Zool A Comp Exp Biol; 2005 Jul; 303(7):563-76. PubMed ID: 15945079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gill cellular changes induced by copper exposure in the South American tropical freshwater fish Prochilodus scrofa.
    Mazon AF; Cerqueira CC; Fernandes MN
    Environ Res; 2002 Jan; 88(1):52-63. PubMed ID: 11896669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gill chloride cell proliferation and respiratory responses to hypoxia of the neotropical erythrinid fish Hoplias malabaricus.
    Sakuragui MM; Sanches JR; Fernandes MN
    J Comp Physiol B; 2003 Jun; 173(4):309-17. PubMed ID: 12677459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypercarbic cardiorespiratory reflexes in the facultative air-breathing fish jeju (Hoplerythrinus unitaeniatus): the role of branchial CO2 chemoreceptors.
    de Lima Boijink C; Florindo LH; Leite CA; Kalinin AL; Milsom WK; Rantin FT
    J Exp Biol; 2010 Aug; 213(Pt 16):2797-807. PubMed ID: 20675550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into fish ion regulation and mitochondrion-rich cells.
    Hwang PP; Lee TH
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):479-97. PubMed ID: 17689996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium ion triggers rapid morphological oscillation of chloride cells in the mudskipper, Periophthalmus modestus.
    Sakamoto T; Ando M
    J Comp Physiol B; 2002 Jul; 172(5):435-9. PubMed ID: 12122459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apical structures of "mitochondria-rich" alpha and beta cells in euryhaline fish gill: their behaviour in various living conditions.
    Pisam M; Le Moal C; Auperin B; Prunet P; Rambourg A
    Anat Rec; 1995 Jan; 241(1):13-24. PubMed ID: 7879919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fish out of water: gill and skin remodeling promotes osmo- and ionoregulation in the mangrove killifish Kryptolebias marmoratus.
    Leblanc DM; Wood CM; Fudge DS; Wright PA
    Physiol Biochem Zool; 2010; 83(6):932-49. PubMed ID: 21029016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of acidity on gill variations in the aquatic air-breathing fish, Trichogaster lalius.
    Huang CY; Lin HC
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Jan; 158(1):61-71. PubMed ID: 20840871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential freshwater adaptation in juvenile sea-bass Dicentrarchus labrax: involvement of gills and urinary system.
    Nebel C; Romestand B; Nègre-Sadargues G; Grousset E; Aujoulat F; Bacal J; Bonhomme F; Charmantier G
    J Exp Biol; 2005 Oct; 208(Pt 20):3859-71. PubMed ID: 16215214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraspecific divergence of ionoregulatory physiology in the euryhaline teleost Fundulus heteroclitus: possible mechanisms of freshwater adaptation.
    Scott GR; Rogers JT; Richards JG; Wood CM; Schulte PM
    J Exp Biol; 2004 Sep; 207(Pt 19):3399-410. PubMed ID: 15326216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The toxicity of copper to crucian carp (Carassius carassius) in soft water.
    Schjolden J; Sørensen J; Nilsson GE; Poléo AB
    Sci Total Environ; 2007 Oct; 384(1-3):239-51. PubMed ID: 17628637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in salinity tolerance, gill Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar.
    Hiroi J; McCormick SD
    J Exp Biol; 2007 Mar; 210(Pt 6):1015-24. PubMed ID: 17337714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The changes to apical silver membrane uptake, and basolateral membrane silver export in the gills of rainbow trout (Oncorhynchus mykiss) on exposure to sublethal silver concentrations.
    Bury NR
    Aquat Toxicol; 2005 Mar; 72(1-2):135-45. PubMed ID: 15748752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The source of lamellar mitochondria-rich cells in the air-breathing fish, Trichogaster leeri.
    Lee W; Huang CY; Lin HC
    J Exp Zool A Ecol Genet Physiol; 2008 Apr; 309(4):198-205. PubMed ID: 18278804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative changes in metallothionein expression in target cell-types in the gills of turbot (Scophthalmus maximus) exposed to Cd, Cu, Zn and after a depuration treatment.
    Alvarado NE; Quesada I; Hylland K; Marigómez I; Soto M
    Aquat Toxicol; 2006 Apr; 77(1):64-77. PubMed ID: 16343657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of acute silver toxicity in marine invertebrates.
    Bianchini A; Playle RC; Wood CM; Walsh PJ
    Aquat Toxicol; 2005 Mar; 72(1-2):67-82. PubMed ID: 15748748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.