BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 12884363)

  • 1. Ets protein Elf-1 bidirectionally suppresses transcriptional activities of the tumor suppressor Tsc2 gene and the repair-related Nth1 gene.
    Honda S; Kobayashi T; Kajino K; Urakami S; Igawa M; Hino O
    Mol Carcinog; 2003 Jul; 37(3):122-9. PubMed ID: 12884363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of functional elements in the bidirectional promoter of the mouse Nthl1 and Tsc2 genes.
    Ikeda S; Mochizuki A; Sarker AH; Seki S
    Biochem Biophys Res Commun; 2000 Jul; 273(3):1063-8. PubMed ID: 10891372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presence of potent transcriptional activation domains in the predisposing tuberous sclerosis (Tsc2) gene product of the Eker rat model.
    Tsuchiya H; Orimoto K; Kobayashi K; Hino O
    Cancer Res; 1996 Feb; 56(3):429-33. PubMed ID: 8564946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional regulation of the mouse PNRC2 promoter by the nuclear factor Y (NFY) and E2F1.
    Zhou D; Masri S; Ye JJ; Chen S
    Gene; 2005 Nov; 361():89-100. PubMed ID: 16181749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of cDNAs induced by the tumor suppressor Tsc2 gene using a conditional expression system in Tsc2 mutant (Eker) rat renal carcinoma cells.
    Orimoto K; Tsuchiya H; Sakurai J; Nishizawa M; Hino O
    Biochem Biophys Res Commun; 1998 Jun; 247(3):728-33. PubMed ID: 9647762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of the neoplastic phenotype by replacement of the Tsc2 gene in Eker rat renal carcinoma cells.
    Orimoto K; Tsuchiya H; Kobayashi T; Matsuda T; Hino O
    Biochem Biophys Res Commun; 1996 Feb; 219(1):70-5. PubMed ID: 8619830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of tumor suppressor Tsc2 and DNA repair glycosylase Nth1 during spontaneous liver tumorigenesis in Long-Evans Cinnamon rats.
    Sajankila SP; Manthena PV; Adhikari S; Choudhury S; Izumi K; Roy R
    Mol Cell Biochem; 2010 May; 338(1-2):233-9. PubMed ID: 20033472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of members of the AP-1 transcriptional factor family from an early stage of renal carcinogenesis and inhibition of cell growth by AP-1 gene antisense oligonucleotides in the Tsc2 gene mutant (Eker) rat model.
    Urakami S; Tsuchiya H; Orimoto K; Kobayashi T; Igawa M; Hino O
    Biochem Biophys Res Commun; 1997 Dec; 241(1):24-30. PubMed ID: 9405228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the promoter for the alpha3 integrin gene in various tumor cell lines: roles of the Ets- and Sp-family of transcription factors.
    Katabami K; Kato T; Sano R; Ogura M; Mizuno H; Itoh S; Tsuji T
    J Cell Biochem; 2006 Feb; 97(3):530-43. PubMed ID: 16211576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E2F sites in the Op18 promoter are required for high level of expression in the human prostate carcinoma cell line PC-3-M.
    Polzin RG; Benlhabib H; Trepel J; Herrera JE
    Gene; 2004 Oct; 341():209-18. PubMed ID: 15474303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the promoter of human transcription factor Sp3 and evidence of the role of factors Sp1 and Sp3 in the expression of Sp3 protein.
    Lou Z; Maher VM; McCormick JJ
    Gene; 2005 May; 351():51-9. PubMed ID: 15857802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism of transcriptional repression of gelsolin in human breast cancer cells.
    Dong Y; Asch HL; Ying A; Asch BB
    Exp Cell Res; 2002 Jun; 276(2):328-36. PubMed ID: 12027462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the human LAT gene by the Elf-1 transcription factor.
    Finco TS; Justice-Healy GE; Patel SJ; Hamilton VE
    BMC Mol Biol; 2006 Feb; 7():4. PubMed ID: 16464244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell cycle-dependent regulation of the Skp2 promoter by GA-binding protein.
    Imaki H; Nakayama K; Delehouzee S; Handa H; Kitagawa M; Kamura T; Nakayama KI
    Cancer Res; 2003 Aug; 63(15):4607-13. PubMed ID: 12907639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E2F-HDAC complexes negatively regulate the tumor suppressor gene ARHI in breast cancer.
    Lu Z; Luo RZ; Peng H; Huang M; Nishmoto A; Hunt KK; Helin K; Liao WS; Yu Y
    Oncogene; 2006 Jan; 25(2):230-9. PubMed ID: 16158053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of KLF5 involves the Sp1 transcription factor in human epithelial cells.
    Chen C; Zhou Y; Zhou Z; Sun X; Otto KB; Uht RM; Dong JT
    Gene; 2004 Apr; 330():133-42. PubMed ID: 15087132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ING1 represses transcription by direct DNA binding and through effects on p53.
    Kataoka H; Bonnefin P; Vieyra D; Feng X; Hara Y; Miura Y; Joh T; Nakabayashi H; Vaziri H; Harris CC; Riabowol K
    Cancer Res; 2003 Sep; 63(18):5785-92. PubMed ID: 14522900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel transcription factor, ELF5, belongs to the ELF subfamily of ETS genes and maps to human chromosome 11p13-15, a region subject to LOH and rearrangement in human carcinoma cell lines.
    Zhou J; Ng AY; Tymms MJ; Jermiin LS; Seth AK; Thomas RS; Kola I
    Oncogene; 1998 Nov; 17(21):2719-32. PubMed ID: 9840936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic organization and promoter analysis of the mouse ADP-ribosylarginine hydrolase gene.
    Aoki K; Kato J; Shoemaker MT; Moss J
    Gene; 2005 May; 351():83-95. PubMed ID: 15893437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sp1 site is crucial for the mouse claudin-19 gene expression in the kidney cells.
    Luk JM; Tong MK; Mok BW; Tam PC; Yeung WS; Lee KF
    FEBS Lett; 2004 Dec; 578(3):251-6. PubMed ID: 15589828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.