These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12885171)

  • 21. Maize (Zea mays L.) transformation by Agrobacterium tumefaciens infection of pollinated ovules.
    Chen L; Cong Y; He H; Yu Y
    J Biotechnol; 2014 Feb; 171():8-16. PubMed ID: 24333124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Root transformation by Agrobacterium tumefaciens.
    Vergunst AC; de Waal EC; Hooykaas PJ
    Methods Mol Biol; 1998; 82():227-44. PubMed ID: 9664429
    [No Abstract]   [Full Text] [Related]  

  • 23. Agrobacterium-mediated sorghum transformation.
    Zhao ZY; Cai T; Tagliani L; Miller M; Wang N; Pang H; Rudert M; Schroeder S; Hondred D; Seltzer J; Pierce D
    Plant Mol Biol; 2000 Dec; 44(6):789-98. PubMed ID: 11202440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation.
    Yi H; Mysore KS; Gelvin SB
    Plant J; 2002 Nov; 32(3):285-98. PubMed ID: 12410808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of simple and efficient in Planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens.
    Supartana P; Shimizu T; Nogawa M; Shioiri H; Nakajima T; Haramoto N; Nozue M; Kojima M
    J Biosci Bioeng; 2006 Sep; 102(3):162-70. PubMed ID: 17046528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a simple and efficient method for transformation of buckwheat plants (Fagopyrum esculentum) using Agrobacterium tumefaciens.
    Kojima M; Arai Y; Iwase N; Shirotori K; Shioiri H; Nozue M
    Biosci Biotechnol Biochem; 2000 Apr; 64(4):845-7. PubMed ID: 10830503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression and genomic integration of transgenes after Agrobacterium-mediated transformation of mature barley embryos.
    Uçarlı C; Tufan F; Gürel F
    Genet Mol Res; 2015 Feb; 14(1):1096-105. PubMed ID: 25730049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Agrobacterium tumefaciens-mediated transformation of maize endosperm as a tool to study endosperm cell biology.
    Reyes FC; Sun B; Guo H; Gruis DF; Otegui MS
    Plant Physiol; 2010 Jun; 153(2):624-31. PubMed ID: 20357137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium.
    Nam J; Mysore KS; Zheng C; Knue MK; Matthysse AG; Gelvin SB
    Mol Gen Genet; 1999 Apr; 261(3):429-38. PubMed ID: 10323222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of seed-specific expression of a cytokinin biosynthetic gene on canola and tobacco phenotypes.
    Roeckel P; Oancia T; Drevet J
    Transgenic Res; 1997 Mar; 6(2):133-41. PubMed ID: 9090061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Establishment of an efficient genetic transformation method in Dunaliella tertiolecta mediated by Agrobacterium tumefaciens.
    Norzagaray-Valenzuela CD; Germán-Báez LJ; Valdez-Flores MA; Hernández-Verdugo S; Shelton LM; Valdez-Ortiz A
    J Microbiol Methods; 2018 Jul; 150():9-17. PubMed ID: 29777738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.
    Mestiri I; Norre F; Gallego ME; White CI
    Plant J; 2014 Feb; 77(4):511-20. PubMed ID: 24299074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation.
    Hwang HH; Gelvin SB
    Plant Cell; 2004 Nov; 16(11):3148-67. PubMed ID: 15494553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos.
    Kumar R; Mamrutha HM; Kaur A; Venkatesh K; Sharma D; Singh GP
    Mol Biol Rep; 2019 Apr; 46(2):1845-1853. PubMed ID: 30707418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase.
    Vergunst AC; Jansen LE; Hooykaas PJ
    Nucleic Acids Res; 1998 Jun; 26(11):2729-34. PubMed ID: 9592161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation of embryo-specific mutants in Arabidopsis: plant transformation.
    Liu NY; Zhang ZF; Yang WC
    Methods Mol Biol; 2008; 427():91-100. PubMed ID: 18369999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantification of Agrobacterium tumefaciens C58 attachment to Arabidopsis thaliana roots.
    Petrovicheva A; Joyner J; Muth TR
    FEMS Microbiol Lett; 2017 Oct; 364(18):. PubMed ID: 28922840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diphtheria toxin-mediated cell ablation reveals interregional communication during Arabidopsis seed development.
    Weijers D; Van Hamburg JP; Van Rijn E; Hooykaas PJ; Offringa R
    Plant Physiol; 2003 Dec; 133(4):1882-92. PubMed ID: 14605218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Suppression of different classes of somatic mutations in Arabidopsis by vir gene-expressing Agrobacterium strains.
    Shah JM; Ramakrishnan AM; Singh AK; Ramachandran S; Unniyampurath U; Jayshankar A; Balasundaram N; Dhanapal S; Hyde G; Baskar R
    BMC Plant Biol; 2015 Aug; 15():210. PubMed ID: 26307100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tissue-specific transcriptome analysis reveals cell wall metabolism, flavonol biosynthesis and defense responses are activated in the endosperm of germinating Arabidopsis thaliana seeds.
    Endo A; Tatematsu K; Hanada K; Duermeyer L; Okamoto M; Yonekura-Sakakibara K; Saito K; Toyoda T; Kawakami N; Kamiya Y; Seki M; Nambara E
    Plant Cell Physiol; 2012 Jan; 53(1):16-27. PubMed ID: 22147073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.