These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 12885232)
1. Structural and dynamic properties of the HIV-1 tat transduction domain in the free and heparin-bound states. Hakansson S; Caffrey M Biochemistry; 2003 Aug; 42(30):8999-9006. PubMed ID: 12885232 [TBL] [Abstract][Full Text] [Related]
2. Heparin binding by the HIV-1 tat protein transduction domain. Hakansson S; Jacobs A; Caffrey M Protein Sci; 2001 Oct; 10(10):2138-9. PubMed ID: 11567105 [TBL] [Abstract][Full Text] [Related]
3. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
4. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters. Ziegler A; Seelig J Biophys J; 2004 Jan; 86(1 Pt 1):254-63. PubMed ID: 14695267 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of HIV-Tat protein transduction domain. Yoon JS; Jung YT; Hong SK; Kim SH; Shin MC; Lee DG; Shin WS; Min WS; Paik SY J Microbiol; 2004 Dec; 42(4):328-35. PubMed ID: 15650690 [TBL] [Abstract][Full Text] [Related]
6. The oligomeric structure of vaccinia viral envelope protein A27L is essential for binding to heparin and heparan sulfates on cell surfaces: a structural and functional approach using site-specific mutagenesis. Ho Y; Hsiao JC; Yang MH; Chung CS; Peng YC; Lin TH; Chang W; Tzou DL J Mol Biol; 2005 Jun; 349(5):1060-71. PubMed ID: 15913650 [TBL] [Abstract][Full Text] [Related]
7. Homonuclear (1)H-NMR assignment and structural characterization of human immunodeficiency virus type 1 Tat Mal protein. Grégoire C; Péloponèse JM; Esquieu D; Opi S; Campbell G; Solomiac M; Lebrun E; Lebreton J; Loret EP Biopolymers; 2001; 62(6):324-35. PubMed ID: 11857271 [TBL] [Abstract][Full Text] [Related]
8. Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 Tat. Gabizon R; Mor M; Rosenberg MM; Britan L; Hayouka Z; Kotler M; Shalev DE; Friedler A Biopolymers; 2008; 90(2):105-16. PubMed ID: 18189286 [TBL] [Abstract][Full Text] [Related]
9. Targeting of HIV-1 Tat traffic and function by transduction-competent single chain antibodies. Theisen DM; Pongratz C; Wiegmann K; Rivero F; Krut O; Krönke M Vaccine; 2006 Apr; 24(16):3127-36. PubMed ID: 16497417 [TBL] [Abstract][Full Text] [Related]
10. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Gonçalves E; Kitas E; Seelig J Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783 [TBL] [Abstract][Full Text] [Related]
11. Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant. Watkins JD; Campbell GR; Halimi H; Loret EP Retrovirology; 2008 Sep; 5():83. PubMed ID: 18808674 [TBL] [Abstract][Full Text] [Related]
12. Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Caron NJ; Torrente Y; Camirand G; Bujold M; Chapdelaine P; Leriche K; Bresolin N; Tremblay JP Mol Ther; 2001 Mar; 3(3):310-8. PubMed ID: 11273772 [TBL] [Abstract][Full Text] [Related]
13. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes. Tiriveedhi V; Butko P Biochemistry; 2007 Mar; 46(12):3888-95. PubMed ID: 17338552 [TBL] [Abstract][Full Text] [Related]
14. Insights on HIV-1 Tat:P/CAF bromodomain molecular recognition from in vivo experiments and molecular dynamics simulations. Pantano S; Marcello A; Ferrari A; Gaudiosi D; Sabò A; Pellegrini V; Beltram F; Giacca M; Carloni P Proteins; 2006 Mar; 62(4):1062-73. PubMed ID: 16362936 [TBL] [Abstract][Full Text] [Related]
15. HIV-1 TAT protein transduction domain mediates enhancement of enzyme prodrug cancer gene therapy in vitro: a study with TAT-TK-GFP triple fusion construct. Meriläinen O; Hakkarainen T; Wahlfors T; Pellinen R; Wahlfors J Int J Oncol; 2005 Jul; 27(1):203-8. PubMed ID: 15942661 [TBL] [Abstract][Full Text] [Related]
16. Cell-penetrating HIV1 TAT peptides float on model lipid bilayers. Ciobanasu C; Harms E; Tünnemann G; Cardoso MC; Kubitscheck U Biochemistry; 2009 Jun; 48(22):4728-37. PubMed ID: 19400584 [TBL] [Abstract][Full Text] [Related]
17. Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase. Grunau A; Paine MJ; Ladbury JE; Gutierrez A Biochemistry; 2006 Feb; 45(5):1421-34. PubMed ID: 16445284 [TBL] [Abstract][Full Text] [Related]
18. Interaction of HIV-1 Tat protein with heparin. Role of the backbone structure, sulfation, and size. Rusnati M; Coltrini D; Oreste P; Zoppetti G; Albini A; Noonan D; d'Adda di Fagagna F; Giacca M; Presta M J Biol Chem; 1997 Apr; 272(17):11313-20. PubMed ID: 9111037 [TBL] [Abstract][Full Text] [Related]
19. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5. Goda N; Tenno T; Inomata K; Shirakawa M; Tanaka T; Hiroaki H Exp Cell Res; 2008 Aug; 314(13):2352-61. PubMed ID: 18602100 [TBL] [Abstract][Full Text] [Related]
20. Transduction of Cu, Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into human chondrocytes. Kim HA; Kim DW; Park J; Choi SY Arthritis Res Ther; 2006; 8(4):R96. PubMed ID: 16792821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]