BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 12885250)

  • 1. Addition of lysines to the 50/20 kDa junction of myosin strengthens weak binding to actin without affecting the maximum ATPase activity.
    Joel PB; Sweeney HL; Trybus KM
    Biochemistry; 2003 Aug; 42(30):9160-6. PubMed ID: 12885250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding.
    Risal D; Gourinath S; Himmel DM; Szent-Györgyi AG; Cohen C
    Proc Natl Acad Sci U S A; 2004 Jun; 101(24):8930-5. PubMed ID: 15184651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of loop 1 affects the nucleotide binding properties of Myo1c, the adaptation motor in the inner ear.
    Adamek N; Lieto-Trivedi A; Geeves MA; Coluccio LM
    Biochemistry; 2010 Feb; 49(5):958-71. PubMed ID: 20039646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocols for Myosin and Actin-Myosin Assays Using Rapid, Stopped-Flow Kinetics.
    Kao K; Geeves MA
    Methods Mol Biol; 2024; 2735():191-211. PubMed ID: 38038850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mavacamten stabilizes an autoinhibited state of two-headed cardiac myosin.
    Rohde JA; Roopnarine O; Thomas DD; Muretta JM
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):E7486-E7494. PubMed ID: 30018063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myosin I can act as a molecular force sensor.
    Laakso JM; Lewis JH; Shuman H; Ostap EM
    Science; 2008 Jul; 321(5885):133-6. PubMed ID: 18599791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic interactions play a role in the regulatory mechanism of scallop heavy meromyosin.
    Nyitrai M; Stafford WF; Szent-Györgyi AG; Geeves MA
    Biophys J; 2003 Aug; 85(2):1053-62. PubMed ID: 12885652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dilated cardiomyopathy mutation in beta-cardiac myosin enhances actin activation of the power stroke and phosphate release.
    Bodt SML; Ge J; Ma W; Rasicci DV; Desetty R; McCammon JA; Yengo CM
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of ultrafast myosin, its amino acid sequence, and structural features.
    Haraguchi T; Tamanaha M; Suzuki K; Yoshimura K; Imi T; Tominaga M; Sakayama H; Nishiyama T; Murata T; Ito K
    Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35173046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FRET and optical trapping reveal mechanisms of actin activation of the power stroke and phosphate release in myosin V.
    Gunther LK; Rohde JA; Tang W; Cirilo JA; Marang CP; Scott BD; Thomas DD; Debold EP; Yengo CM
    J Biol Chem; 2020 Dec; 295(51):17383-17397. PubMed ID: 33453985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms underlying deoxy-ADP.Pi activation of pre-powerstroke myosin.
    Nowakowski SG; Regnier M; Daggett V
    Protein Sci; 2017 Apr; 26(4):749-762. PubMed ID: 28097776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin 3A kinase activity is regulated by phosphorylation of the kinase domain activation loop.
    Quintero OA; Unrath WC; Stevens SM; Manor U; Kachar B; Yengo CM
    J Biol Chem; 2013 Dec; 288(52):37126-37. PubMed ID: 24214986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic characterization of the ATPase and actin-activated ATPase activities of Acanthamoeba castellanii myosin-2.
    Heissler SM; Liu X; Korn ED; Sellers JR
    J Biol Chem; 2013 Sep; 288(37):26709-20. PubMed ID: 23897814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and bioinformatic analysis of the myosin-XIX motor domain.
    Adikes RC; Unrath WC; Yengo CM; Quintero OA
    Cytoskeleton (Hoboken); 2013 May; 70(5):281-95. PubMed ID: 23568824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the actin-activated MgATPase activity of Acanthamoeba myosin II by phosphorylation of serine 639 in motor domain loop 2.
    Liu X; Lee DY; Cai S; Yu S; Shu S; Levine RL; Korn ED
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):E23-32. PubMed ID: 23248278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant-Specific Myosin XI, a Molecular Perspective.
    Tominaga M; Nakano A
    Front Plant Sci; 2012; 3():211. PubMed ID: 22973289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependent measurements reveal similarities between muscle and non-muscle myosin motility.
    Yengo CM; Takagi Y; Sellers JR
    J Muscle Res Cell Motil; 2012 Dec; 33(6):385-94. PubMed ID: 22930330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion of myosin V on microtubules: a fine-tuned interaction for which E-hooks are dispensable.
    Zimmermann D; Abdel Motaal B; Voith von Voithenberg L; Schliwa M; Ökten Z
    PLoS One; 2011; 6(9):e25473. PubMed ID: 21966532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique charge distribution in surface loops confers high velocity on the fast motor protein Chara myosin.
    Ito K; Yamaguchi Y; Yanase K; Ichikawa Y; Yamamoto K
    Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21585-90. PubMed ID: 19955408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanochemical coupling in the myosin motor domain. II. Analysis of critical residues.
    Yu H; Ma L; Yang Y; Cui Q
    PLoS Comput Biol; 2007 Feb; 3(2):e23. PubMed ID: 17305418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.