BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 12885441)

  • 1. Sources of oxygen radicals in brain in acute ammonia intoxication in vivo.
    Kosenko E; Venediktova N; Kaminsky Y; Montoliu C; Felipo V
    Brain Res; 2003 Aug; 981(1-2):193-200. PubMed ID: 12885441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blocking NMDA receptors prevents the oxidative stress induced by acute ammonia intoxication.
    Kosenko E; Kaminski Y; Lopata O; Muravyov N; Felipo V
    Free Radic Biol Med; 1999 Jun; 26(11-12):1369-74. PubMed ID: 10401599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide.
    Kaminsky Y; Kosenko E
    Brain Res; 2009 Oct; 1294():193-201. PubMed ID: 19646976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide production and antioxidant enzymes in ammonia intoxication in rats.
    Kosenko E; Kaminsky Y; Kaminsky A; Valencia M; Lee L; Hermenegildo C; Felipo V
    Free Radic Res; 1997 Dec; 27(6):637-44. PubMed ID: 9455699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Portacaval shunting causes differential mitochondrial superoxide production in brain regions.
    Kosenko EA; Tikhonova LA; Alilova GA; Montoliu C; Barreto GE; Aliev G; Kaminsky YG
    Free Radic Biol Med; 2017 Dec; 113():109-118. PubMed ID: 28964916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitroarginine, an inhibitor of nitric oxide synthase, prevents changes in superoxide radical and antioxidant enzymes induced by ammonia intoxication.
    Kosenko E; Kaminsky Y; Lopata O; Muravyov N; Kaminsky A; Hermenegildo C; Felipo V
    Metab Brain Dis; 1998 Mar; 13(1):29-41. PubMed ID: 9570638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activities of xanthine oxidoreductase and antioxidant enzymes in different tissues of diabetic rats.
    Aliciguzel Y; Ozen I; Aslan M; Karayalcin U
    J Lab Clin Med; 2003 Sep; 142(3):172-7. PubMed ID: 14532905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xanthine oxidase-derived reactive oxygen species contribute to the development of D-galactosamine-induced liver injury in rats.
    Ohta Y; Matsura T; Kitagawa A; Tokunaga K; Yamada K
    Free Radic Res; 2007 Feb; 41(2):135-44. PubMed ID: 17364939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melatonin prevents disruption of hepatic reactive oxygen species metabolism in rats treated with carbon tetrachloride.
    Ohta Y; Kongo-Nishimura M; Matsura T; Yamada K; Kitagawa A; Kishikawa T
    J Pineal Res; 2004 Jan; 36(1):10-7. PubMed ID: 14675125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration of mitochondrial calcium homeostasis by ammonia-induced activation of NMDA receptors in rat brain in vivo.
    Kosenko E; Kaminsky Y; Stavroskaya IG; Felipo V
    Brain Res; 2000 Oct; 880(1-2):139-46. PubMed ID: 11032998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of exercise on brain antioxidant status of diabetic rats.
    Ozkaya YG; Agar A; Yargiçoglu P; Hacioglu G; Bilmen-Sarikçioglu S; Ozen I; Alicigüzel Y
    Diabetes Metab; 2002 Nov; 28(5):377-84. PubMed ID: 12461474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of oxidative stress in skeletal muscle atrophied by immobilization.
    Kondo H; Nakagaki I; Sasaki S; Hori S; Itokawa Y
    Am J Physiol; 1993 Dec; 265(6 Pt 1):E839-44. PubMed ID: 8279538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the antioxidant/prooxidant status of murine skin following topical treatment with 12-O-tetradecanoylphorbol-13-acetate and throughout the ontogeny of skin cancer. Part I: Quantitation of superoxide dismutase, catalase, glutathione peroxidase and xanthine oxidase.
    Reiners JJ; Thai G; Rupp T; Cantu AR
    Carcinogenesis; 1991 Dec; 12(12):2337-43. PubMed ID: 1747937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats.
    Chaudhary S; Parvez S
    Neuroscience; 2012 Dec; 225():258-68. PubMed ID: 22960313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of free radical metabolism in the brain of mice infected with scrapie agent.
    Lee DW; Sohn HO; Lim HB; Lee YG; Kim YS; Carp RI; Wisniewski HM
    Free Radic Res; 1999 Jun; 30(6):499-507. PubMed ID: 10400462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperoxia and xanthine dehydrogenase/oxidase activities in rat lung and heart.
    Elsayed NM; Tierney DF
    Arch Biochem Biophys; 1989 Sep; 273(2):281-6. PubMed ID: 2549869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of cultured alveolar epithelial cell xanthine dehydrogenase/oxidase.
    Panus PC; Burgess B; Freeman BA
    Biochim Biophys Acta; 1991 Feb; 1091(3):303-9. PubMed ID: 2001413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant defences in rat, pig, guinea pig, and human hearts: comparison with xanthine oxidoreductase activity.
    Janssen M; van der Meer P; de Jong JW
    Cardiovasc Res; 1993 Nov; 27(11):2052-7. PubMed ID: 8287417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laminar xanthine oxidase, superoxide dismutase and catalase activities in the prodromal stage of black-walnut induced equine laminitis.
    Loftus JP; Belknap JK; Stankiewicz KM; Black SJ
    Equine Vet J; 2007 Jan; 39(1):48-53. PubMed ID: 17228595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide dismutase, catalase, glutathione peroxidase and xanthine oxidase in diabetic rat lenses.
    Cekiç O; Bardak Y; Totan Y; Akyol O; Zilelioglu G
    Ophthalmic Res; 1999; 31(5):346-50. PubMed ID: 10420119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.