These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 12885637)
1. Partitioning of individual flexible polymers into a nanoscopic protein pore. Movileanu L; Cheley S; Bayley H Biophys J; 2003 Aug; 85(2):897-910. PubMed ID: 12885637 [TBL] [Abstract][Full Text] [Related]
2. Interactions of peptides with a protein pore. Movileanu L; Schmittschmitt JP; Scholtz JM; Bayley H Biophys J; 2005 Aug; 89(2):1030-45. PubMed ID: 15923222 [TBL] [Abstract][Full Text] [Related]
3. Partitioning of a polymer into a nanoscopic protein pore obeys a simple scaling law. Movileanu L; Bayley H Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10137-41. PubMed ID: 11504913 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of KCl enhancement in detection of nonionic polymers by nanopore sensors. Rodrigues CG; Machado DC; Chevtchenko SF; Krasilnikov OV Biophys J; 2008 Dec; 95(11):5186-92. PubMed ID: 18805926 [TBL] [Abstract][Full Text] [Related]
5. Threading synthetic polyelectrolytes through protein pores. Murphy RJ; Muthukumar M J Chem Phys; 2007 Feb; 126(5):051101. PubMed ID: 17302462 [TBL] [Abstract][Full Text] [Related]
6. Partitioning of differently sized poly(ethylene glycol)s into OmpF porin. Rostovtseva TK; Nestorovich EM; Bezrukov SM Biophys J; 2002 Jan; 82(1 Pt 1):160-9. PubMed ID: 11751305 [TBL] [Abstract][Full Text] [Related]
7. Probing distance and electrical potential within a protein pore with tethered DNA. Howorka S; Bayley H Biophys J; 2002 Dec; 83(6):3202-10. PubMed ID: 12496089 [TBL] [Abstract][Full Text] [Related]
8. Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. Krasilnikov OV; Rodrigues CG; Bezrukov SM Phys Rev Lett; 2006 Jul; 97(1):018301. PubMed ID: 16907416 [TBL] [Abstract][Full Text] [Related]
9. Soft perforation of planar bilayer lipid membranes of dipalmitoylphosphatidylcholine at the temperature of the phase transition from the liquid crystalline to the gel state. Antonov VF; Anosov AA; Norik VP; Smirnova EY Eur Biophys J; 2005 Mar; 34(2):155-62. PubMed ID: 15480622 [TBL] [Abstract][Full Text] [Related]
10. Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel. Merzlyak PG; Yuldasheva LN; Rodrigues CG; Carneiro CM; Krasilnikov OV; Bezrukov SM Biophys J; 1999 Dec; 77(6):3023-33. PubMed ID: 10585924 [TBL] [Abstract][Full Text] [Related]
11. Location of a constriction in the lumen of a transmembrane pore by targeted covalent attachment of polymer molecules. Movileanu L; Cheley S; Howorka S; Braha O; Bayley H J Gen Physiol; 2001 Mar; 117(3):239-52. PubMed ID: 11222628 [TBL] [Abstract][Full Text] [Related]
12. High-Resolution Size-Discrimination of Single Nonionic Synthetic Polymers with a Highly Charged Biological Nanopore. Baaken G; Halimeh I; Bacri L; Pelta J; Oukhaled A; Behrends JC ACS Nano; 2015 Jun; 9(6):6443-9. PubMed ID: 26028280 [TBL] [Abstract][Full Text] [Related]
13. Size-dependent interaction of a 3-arm star poly(ethylene glycol) with two biological nanopores. Talarimoghari M; Baaken G; Hanselmann R; Behrends JC Eur Phys J E Soft Matter; 2018 Jun; 41(6):77. PubMed ID: 29926213 [TBL] [Abstract][Full Text] [Related]
14. Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin. Aksoyoglu MA; Podgornik R; Bezrukov SM; Gurnev PA; Muthukumar M; Parsegian VA Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9003-8. PubMed ID: 27466408 [TBL] [Abstract][Full Text] [Related]
15. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Movileanu L; Howorka S; Braha O; Bayley H Nat Biotechnol; 2000 Oct; 18(10):1091-5. PubMed ID: 11017049 [TBL] [Abstract][Full Text] [Related]
16. Controlling a single protein in a nanopore through electrostatic traps. Mohammad MM; Prakash S; Matouschek A; Movileanu L J Am Chem Soc; 2008 Mar; 130(12):4081-8. PubMed ID: 18321107 [TBL] [Abstract][Full Text] [Related]
17. Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. Baaken G; Sondermann M; Schlemmer C; Rühe J; Behrends JC Lab Chip; 2008 Jun; 8(6):938-44. PubMed ID: 18497915 [TBL] [Abstract][Full Text] [Related]
18. Interaction of Serratia marcescens hemolysin (ShlA) with artificial and erythrocyte membranes. Demonstration of the formation of aqueous multistate channels. Schönherr R; Hilger M; Broer S; Benz R; Braun V Eur J Biochem; 1994 Jul; 223(2):655-63. PubMed ID: 8055936 [TBL] [Abstract][Full Text] [Related]
19. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Reiner JE; Kasianowicz JJ; Nablo BJ; Robertson JW Proc Natl Acad Sci U S A; 2010 Jul; 107(27):12080-5. PubMed ID: 20566890 [TBL] [Abstract][Full Text] [Related]
20. The charge state of an ion channel controls neutral polymer entry into its pore. Bezrukov SM; Kasianowicz JJ Eur Biophys J; 1997; 26(6):471-6. PubMed ID: 9404007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]