BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 12885644)

  • 1. Interaction of viscotoxins A3 and B with membrane model systems: implications to their mechanism of action.
    Giudici M; Pascual R; de la Canal L; Pfüller K; Pfüller U; Villalaín J
    Biophys J; 2003 Aug; 85(2):971-81. PubMed ID: 12885644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between the binding to and permeabilization of phospholipid bilayer membranes by GS14dK4, a designed analog of the antimicrobial peptide gramicidin S.
    Abraham T; Marwaha S; Kobewka DM; Lewis RN; Prenner EJ; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 2007 Sep; 1768(9):2089-98. PubMed ID: 17686454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilayer mixing, fusion, and lysis following the interaction of populations of cationic and anionic phospholipid bilayer vesicles.
    Pantazatos DP; Pantazatos SP; MacDonald RC
    J Membr Biol; 2003 Jul; 194(2):129-39. PubMed ID: 14502437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylethanolamine Bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 2004 Oct; 87(4):2470-82. PubMed ID: 15454444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative membrane interaction study of viscotoxins A3, A2 and B from mistletoe (Viscum album) and connections with their structures.
    Coulon A; Mosbah A; Lopez A; Sautereau AM; Schaller G; Urech K; Rougé P; Darbon H
    Biochem J; 2003 Aug; 374(Pt 1):71-8. PubMed ID: 12733989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local anesthetics structure-dependently interact with anionic phospholipid membranes to modify the fluidity.
    Tsuchiya H; Ueno T; Mizogami M; Takakura K
    Chem Biol Interact; 2010 Jan; 183(1):19-24. PubMed ID: 19853592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the interaction of myelin basic protein with phospholipid bilayers using solid-state NMR spectroscopy.
    Pointer-Keenan CD; Lee DK; Hallok K; Tan A; Zand R; Ramamoorthy A
    Chem Phys Lipids; 2004 Nov; 132(1):47-54. PubMed ID: 15530447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of a Dynorphin A analog, E2078, on phospholipid membrane properties.
    Asai Y; Watanabe S
    Biol Pharm Bull; 1999 May; 22(5):543-5. PubMed ID: 10375180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-liquid immiscibility in membranes.
    McConnell HM; Vrljic M
    Annu Rev Biophys Biomol Struct; 2003; 32():469-92. PubMed ID: 12574063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes.
    Prenner EJ; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):201-21. PubMed ID: 10590309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state.
    Tolleter D; Hincha DK; Macherel D
    Biochim Biophys Acta; 2010 Oct; 1798(10):1926-33. PubMed ID: 20637181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of viscotoxins with vesicles of genuine plant membranes.
    Winkler K; Jäger S; Leneweit G; Schubert R
    Planta Med; 2008 Feb; 74(2):163-7. PubMed ID: 18203060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition path sampling study of flip-flop transitions in model lipid bilayer membranes.
    Martí J; Csajka FS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061918. PubMed ID: 15244628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modes of membrane interaction of a natural cysteine-rich peptide: viscotoxin A3.
    Coulon A; Berkane E; Sautereau AM; Urech K; Rouge P; Lopez A
    Biochim Biophys Acta; 2002 Feb; 1559(2):145-59. PubMed ID: 11853681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-Synuclein interactions with phospholipid model membranes: Key roles for electrostatic interactions and lipid-bilayer structure.
    Pirc K; Ulrih NP
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2002-12. PubMed ID: 26119565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation and lipid-peptide interactions of gramicidin A in lipid membranes: polarized attenuated total reflection infrared spectroscopy and spin-label electron spin resonance.
    Kóta Z; Páli T; Marsh D
    Biophys J; 2004 Mar; 86(3):1521-31. PubMed ID: 14990479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved membrane fluidity of ionic polysaccharide bead-supported phospholipid bilayer membrane systems.
    Haratake M; Takahira E; Yoshida S; Osei-Asante S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2013 Jul; 107():90-6. PubMed ID: 23466547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Modified Phospholipid Bilayers on the Electrochemical Activity of a Membrane-Spanning Conjugated Oligoelectrolyte.
    Jahnke JP; Bazan GC; Sumner JJ
    Langmuir; 2015 Oct; 31(42):11613-20. PubMed ID: 26422050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of β-amyloid (1-42) peptide to negatively charged phospholipid membranes in the liquid-ordered state: modeling and experimental studies.
    Ahyayauch H; Raab M; Busto JV; Andraka N; Arrondo JR; Masserini M; Tvaroska I; Goñi FM
    Biophys J; 2012 Aug; 103(3):453-463. PubMed ID: 22947861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.