BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 12885658)

  • 1. A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy.
    Khurana R; Ionescu-Zanetti C; Pope M; Li J; Nielson L; Ramírez-Alvarado M; Regan L; Fink AL; Carter SA
    Biophys J; 2003 Aug; 85(2):1135-44. PubMed ID: 12885658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of different regions of alpha-synuclein in the assembly of fibrils.
    Qin Z; Hu D; Han S; Hong DP; Fink AL
    Biochemistry; 2007 Nov; 46(46):13322-30. PubMed ID: 17963364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy.
    Jansen R; Dzwolak W; Winter R
    Biophys J; 2005 Feb; 88(2):1344-53. PubMed ID: 15574704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of alpha-synuclein fibrils in nanoscale studied by peptide truncation and AFM.
    Zhang F; Lin XJ; Ji LN; Du HN; Tang L; He JH; Hu J; Hu HY
    Biochem Biophys Res Commun; 2008 Apr; 368(2):388-94. PubMed ID: 18230346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative morphological analysis reveals ultrastructural diversity of amyloid fibrils from alpha-synuclein mutants.
    van Raaij ME; Segers-Nolten IM; Subramaniam V
    Biophys J; 2006 Dec; 91(11):L96-8. PubMed ID: 16997873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid self-assembly of alpha-synuclein observed by in situ atomic force microscopy.
    Hoyer W; Cherny D; Subramaniam V; Jovin TM
    J Mol Biol; 2004 Jun; 340(1):127-39. PubMed ID: 15184027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural evidence for alpha-synuclein fibrils using in situ atomic force microscopy.
    Zhang F; Ji LN; Tang L; Hu J; Hu HY; Xu HJ; He JH
    Acta Biochim Biophys Sin (Shanghai); 2005 Feb; 37(2):113-8. PubMed ID: 15685368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloid fibrils of glucagon characterized by high-resolution atomic force microscopy.
    De Jong KL; Incledon B; Yip CM; DeFelippis MR
    Biophys J; 2006 Sep; 91(5):1905-14. PubMed ID: 16766610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine and L-dopa disaggregate amyloid fibrils: implications for Parkinson's and Alzheimer's disease.
    Li J; Zhu M; Manning-Bog AB; Di Monte DA; Fink AL
    FASEB J; 2004 Jun; 18(9):962-4. PubMed ID: 15059976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the assembly of Ig light-chain amyloid fibrils by atomic force microscopy.
    Ionescu-Zanetti C; Khurana R; Gillespie JR; Petrick JS; Trabachino LC; Minert LJ; Carter SA; Fink AL
    Proc Natl Acad Sci U S A; 1999 Nov; 96(23):13175-9. PubMed ID: 10557293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic force microscopy analysis of the Huntington protein nanofibril formation.
    Dahlgren PR; Karymov MA; Bankston J; Holden T; Thumfort P; Ingram VM; Lyubchenko YL
    Nanomedicine; 2005 Mar; 1(1):52-7. PubMed ID: 17292058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural organization of amyloid fibrils by atomic force microscopy.
    Chamberlain AK; MacPhee CE; Zurdo J; Morozova-Roche LA; Hill HA; Dobson CM; Davis JJ
    Biophys J; 2000 Dec; 79(6):3282-93. PubMed ID: 11106631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity.
    Rekas A; Adda CG; Andrew Aquilina J; Barnham KJ; Sunde M; Galatis D; Williamson NA; Masters CL; Anders RF; Robinson CV; Cappai R; Carver JA
    J Mol Biol; 2004 Jul; 340(5):1167-83. PubMed ID: 15236975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forcing nonamyloidogenic beta-synuclein to fibrillate.
    Yamin G; Munishkina LA; Karymov MA; Lyubchenko YL; Uversky VN; Fink AL
    Biochemistry; 2005 Jun; 44(25):9096-107. PubMed ID: 15966733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and nanomechanical characterization of the fundamental single-strand protofilaments of amyloid α-synuclein fibrils.
    Ruggeri FS; Benedetti F; Knowles TPJ; Lashuel HA; Sekatskii S; Dietler G
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7230-7235. PubMed ID: 29941606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphic fibrillar assembly of human amylin.
    Goldsbury CS; Cooper GJ; Goldie KN; Müller SA; Saafi EL; Gruijters WT; Misur MP; Engel A; Aebi U; Kistler J
    J Struct Biol; 1997 Jun; 119(1):17-27. PubMed ID: 9216085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and assembly-disassembly properties of wild-type transthyretin amyloid protofibrils observed with atomic force microscopy.
    Pires RH; Saraiva MJ; Damas AM; Kellermayer MS
    J Mol Recognit; 2011; 24(3):467-76. PubMed ID: 21504025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy under controlled conditions reveals structure of C-terminal region of α-synuclein in amyloid fibrils.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    ACS Nano; 2012 Jul; 6(7):5952-60. PubMed ID: 22695112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transthyretin fibrillogenesis entails the assembly of monomers: a molecular model for in vitro assembled transthyretin amyloid-like fibrils.
    Cardoso I; Goldsbury CS; Müller SA; Olivieri V; Wirtz S; Damas AM; Aebi U; Saraiva MJ
    J Mol Biol; 2002 Apr; 317(5):683-95. PubMed ID: 11955017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy.
    Li Y; Zhao C; Luo F; Liu Z; Gui X; Luo Z; Zhang X; Li D; Liu C; Li X
    Cell Res; 2018 Sep; 28(9):897-903. PubMed ID: 30065316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.