These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 12885674)
1. Sucrose and glycerol effects on photosystem II. Halverson KM; Barry BA Biophys J; 2003 Aug; 85(2):1317-25. PubMed ID: 12885674 [TBL] [Abstract][Full Text] [Related]
2. Effects of ethylene glycol and methanol on ammonia-induced structural changes of the oxygen-evolving complex in photosystem II. Fang CH; Chiang KA; Hung CH; Chang K; Ke SC; Chu HA Biochemistry; 2005 Jul; 44(28):9758-65. PubMed ID: 16008360 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the water oxidizing complex of photosystem II of the Chl d-containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors. Shevela D; Nöring B; Eckert HJ; Messinger J; Renger G Phys Chem Chem Phys; 2006 Aug; 8(29):3460-6. PubMed ID: 16855726 [TBL] [Abstract][Full Text] [Related]
4. Effects of ammonia on the structure of the oxygen-evolving complex in photosystem II as revealed by light-induced FTIR difference spectroscopy. Hou LH; Wu CM; Huang HH; Chu HA Biochemistry; 2011 Nov; 50(43):9248-54. PubMed ID: 21942297 [TBL] [Abstract][Full Text] [Related]
5. Ammonia-induced structural changes of the oxygen-evolving complex in photosystem II as revealed by light-induced FTIR difference spectroscopy. Chu HA; Feng YW; Wang CM; Chiang KA; Ke SC Biochemistry; 2004 Aug; 43(34):10877-85. PubMed ID: 15323548 [TBL] [Abstract][Full Text] [Related]
6. Solvent-induced changes in photochemical activity and conformation of photosystem I particles by glycerol. Ren X; Yang Z; Kuang T Biol Chem; 2006 Jan; 387(1):23-9. PubMed ID: 16497161 [TBL] [Abstract][Full Text] [Related]
7. Evidence for spontaneous structural changes in a dark-adapted state of photosystem II. Halverson KM; Barry BA Biophys J; 2003 Oct; 85(4):2581-8. PubMed ID: 14507720 [TBL] [Abstract][Full Text] [Related]
8. Mid- to low-frequency Fourier transform infrared spectra of S-state cycle for photosynthetic water oxidation in Synechocystis sp. PCC 6803. Yamanari T; Kimura Y; Mizusawa N; Ishii A; Ono TA Biochemistry; 2004 Jun; 43(23):7479-90. PubMed ID: 15182190 [TBL] [Abstract][Full Text] [Related]
9. Localization and functional characterization of the extrinsic subunits of photosystem II: an update. Ifuku K Biosci Biotechnol Biochem; 2015; 79(8):1223-31. PubMed ID: 25848914 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic studies of photosystem II in chlorophyll d-containing Acaryochloris marina. Razeghifard MR; Chen M; Hughes JL; Freeman J; Krausz E; Wydrzynski T Biochemistry; 2005 Aug; 44(33):11178-87. PubMed ID: 16101302 [TBL] [Abstract][Full Text] [Related]
11. Interaction of molecular oxygen with the donor side of photosystem II after destruction of the water-oxidizing complex. Yanykin DV; Khorobrykh AA; Zastrizhnaya OM; Klimov VV Biochemistry (Mosc); 2014 Mar; 79(3):205-12. PubMed ID: 24821446 [TBL] [Abstract][Full Text] [Related]
12. Hydration preferences for Mn4Ca cluster models of photosystem II: location of potential substrate-water binding sites. Petrie S; Stranger R; Pace RJ Chemistry; 2010 Dec; 16(47):14026-42. PubMed ID: 20967896 [TBL] [Abstract][Full Text] [Related]
13. Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. Murray JW; Barber J J Struct Biol; 2007 Aug; 159(2):228-37. PubMed ID: 17369049 [TBL] [Abstract][Full Text] [Related]
14. Modification of the pheophytin redox potential in Thermosynechococcus elongatus Photosystem II with PsbA3 as D1. Sugiura M; Azami C; Koyama K; Rutherford AW; Rappaport F; Boussac A Biochim Biophys Acta; 2014 Jan; 1837(1):139-48. PubMed ID: 24060528 [TBL] [Abstract][Full Text] [Related]
15. Mutagenesis of CP43-arginine-357 to serine reveals new evidence for (bi)carbonate functioning in the water oxidizing complex of Photosystem II. Ananyev G; Nguyen T; Putnam-Evans C; Dismukes GC Photochem Photobiol Sci; 2005 Dec; 4(12):991-8. PubMed ID: 16307112 [TBL] [Abstract][Full Text] [Related]
16. Biological water oxidation. Cox N; Pantazis DA; Neese F; Lubitz W Acc Chem Res; 2013 Jul; 46(7):1588-96. PubMed ID: 23506074 [TBL] [Abstract][Full Text] [Related]
17. Water in Photosystem II: structural, functional and mechanistic considerations. Linke K; Ho FM Biochim Biophys Acta; 2014 Jan; 1837(1):14-32. PubMed ID: 23978393 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of the water oxidizing reactions and the millisecond delayed chlorophyll fluorescence in photosystem II at different pH. Gasanov R; Aliyeva S; Arao S; Ismailova A; Katsuta N; Kitade H; Yamada S; Kawamori A; Mamedov F J Photochem Photobiol B; 2007 Feb; 86(2):160-4. PubMed ID: 17067808 [TBL] [Abstract][Full Text] [Related]
19. Spermine and spermidine inhibition of photosystem II: Disassembly of the oxygen evolving complex and consequent perturbation in electron donation from TyrZ to P680+ and the quinone acceptors QA- to QB. Beauchemin R; Gauthier A; Harnois J; Boisvert S; Govindachary S; Carpentier R Biochim Biophys Acta; 2007 Jul; 1767(7):905-12. PubMed ID: 17511958 [TBL] [Abstract][Full Text] [Related]
20. Photoconsumption of molecular oxygen on both donor and acceptor sides of photosystem II in Mn-depleted subchloroplast membrane fragments. Yanykin DV; Khorobrykh AA; Khorobrykh SA; Klimov VV Biochim Biophys Acta; 2010 Apr; 1797(4):516-23. PubMed ID: 20097156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]