BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 12885766)

  • 1. The coactivator p/CIP/SRC-3 facilitates retinoic acid receptor signaling via recruitment of GCN5.
    Brown K; Chen Y; Underhill TM; Mymryk JS; Torchia J
    J Biol Chem; 2003 Oct; 278(41):39402-12. PubMed ID: 12885766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor.
    Anafi M; Yang YF; Barlev NA; Govindan MV; Berger SL; Butt TR; Walfish PG
    Mol Endocrinol; 2000 May; 14(5):718-32. PubMed ID: 10809234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1.
    Kulesza CA; Van Buskirk HA; Cole MD; Reese JC; Smith MM; Engel DA
    Oncogene; 2002 Feb; 21(9):1411-22. PubMed ID: 11857084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the steroid receptor coactivator 1 (SRC1)-CREB binding protein interaction interface and its importance for the function of SRC1.
    Sheppard HM; Harries JC; Hussain S; Bevan C; Heery DM
    Mol Cell Biol; 2001 Jan; 21(1):39-50. PubMed ID: 11113179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A regulatory role for RIP140 in nuclear receptor activation.
    Treuter E; Albrektsen T; Johansson L; Leers J; Gustafsson JA
    Mol Endocrinol; 1998 Jun; 12(6):864-81. PubMed ID: 9626662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning of xSRC-3, a novel transcription coactivator from Xenopus, that is related to AIB1, p/CIP, and TIF2.
    Kim HJ; Lee SK; Na SY; Choi HS; Lee JW
    Mol Endocrinol; 1998 Jul; 12(7):1038-47. PubMed ID: 9658407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification, mutational analysis, and coactivator requirements of two distinct transcriptional activation domains of the Saccharomyces cerevisiae Hap4 protein.
    Stebbins JL; Triezenberg SJ
    Eukaryot Cell; 2004 Apr; 3(2):339-47. PubMed ID: 15075264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P160/SRC/NCoA coactivators form complexes via specific interaction of their PAS-B domain with the CID/AD1 domain.
    Lodrini M; Münz T; Coudevylle N; Griesinger C; Becker S; Pfitzner E
    Nucleic Acids Res; 2008 Apr; 36(6):1847-60. PubMed ID: 18267973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple signal input and output domains of the 160-kilodalton nuclear receptor coactivator proteins.
    Ma H; Hong H; Huang SM; Irvine RA; Webb P; Kushner PJ; Coetzee GA; Stallcup MR
    Mol Cell Biol; 1999 Sep; 19(9):6164-73. PubMed ID: 10454563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4.
    Larschan E; Winston F
    Genes Dev; 2001 Aug; 15(15):1946-56. PubMed ID: 11485989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo.
    Swanson MJ; Qiu H; Sumibcay L; Krueger A; Kim SJ; Natarajan K; Yoon S; Hinnebusch AG
    Mol Cell Biol; 2003 Apr; 23(8):2800-20. PubMed ID: 12665580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors.
    Hong H; Kohli K; Garabedian MJ; Stallcup MR
    Mol Cell Biol; 1997 May; 17(5):2735-44. PubMed ID: 9111344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional activation by thyroid hormone receptor-beta involves chromatin remodeling, histone acetylation, and synergistic stimulation by p300 and steroid receptor coactivators.
    Lee KC; Li J; Cole PA; Wong J; Kraus WL
    Mol Endocrinol; 2003 May; 17(5):908-22. PubMed ID: 12586842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription factor-specific requirements for coactivators and their acetyltransferase functions.
    Korzus E; Torchia J; Rose DW; Xu L; Kurokawa R; McInerney EM; Mullen TM; Glass CK; Rosenfeld MG
    Science; 1998 Jan; 279(5351):703-7. PubMed ID: 9445475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule-dependent subcellular redistribution of the transcriptional coactivator p/CIP.
    Qutob MS; Bhattacharjee RN; Pollari E; Yee SP; Torchia J
    Mol Cell Biol; 2002 Sep; 22(18):6611-26. PubMed ID: 12192059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID.
    Martinez E; Kundu TK; Fu J; Roeder RG
    J Biol Chem; 1998 Sep; 273(37):23781-5. PubMed ID: 9726987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GCN5 dependence of chromatin remodeling and transcriptional activation by the GAL4 and VP16 activation domains in budding yeast.
    Stafford GA; Morse RH
    Mol Cell Biol; 2001 Jul; 21(14):4568-78. PubMed ID: 11416135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MYC interacts with the human STAGA coactivator complex via multivalent contacts with the GCN5 and TRRAP subunits.
    Zhang N; Ichikawa W; Faiola F; Lo SY; Liu X; Martinez E
    Biochim Biophys Acta; 2014 May; 1839(5):395-405. PubMed ID: 24705139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Conserved alpha-helical motif mediates the binding of diverse nuclear proteins to the SRC1 interaction domain of CBP.
    Matsuda S; Harries JC; Viskaduraki M; Troke PJ; Kindle KB; Ryan C; Heery DM
    J Biol Chem; 2004 Apr; 279(14):14055-64. PubMed ID: 14722092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function.
    Torchia J; Rose DW; Inostroza J; Kamei Y; Westin S; Glass CK; Rosenfeld MG
    Nature; 1997 Jun; 387(6634):677-84. PubMed ID: 9192892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.