BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 12885856)

  • 1. Both xanthophyll cycle-dependent thermal dissipation and the antioxidant system are up-regulated in grape (Vitis labrusca L cv Concord) leaves in response to N limitation.
    Chen LS; Cheng L
    J Exp Bot; 2003 Sep; 54(390):2165-75. PubMed ID: 12885856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves.
    Chen LS; Qi YP; Liu XH
    Ann Bot; 2005 Jul; 96(1):35-41. PubMed ID: 15829508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Photosynthetic characteristics and photoprotective mechanisms during leaf development of soybean plants grown in the field].
    Jiang CD; Gao HY; Zou Q; Jiang GM
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Aug; 30(4):428-34. PubMed ID: 15627692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red 'Anjou' pear has a higher photoprotective capacity than green 'Anjou'.
    Li P; Castagnoli S; Cheng L
    Physiol Plant; 2008 Nov; 134(3):486-98. PubMed ID: 18715235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves.
    Cheng L
    J Exp Bot; 2003 Jan; 54(381):385-93. PubMed ID: 12493867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants.
    Miyake C; Shinzaki Y; Miyata M; Tomizawa K
    Plant Cell Physiol; 2004 Oct; 45(10):1426-33. PubMed ID: 15564526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence.
    Dai J; Gao H; Dai Y; Zou Q
    Plant Biol (Stuttg); 2004; 6(2):171-7. PubMed ID: 15045668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance.
    Melgar JC; Guidi L; Remorini D; Agati G; Degl'innocenti E; Castelli S; Camilla Baratto M; Faraloni C; Tattini M
    Tree Physiol; 2009 Sep; 29(9):1187-98. PubMed ID: 19608597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Photosynthesis and oxidative stress of leaves at different positions in Amomum villosum Lour].
    Li Z; Feng YL
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Oct; 30(5):546-52. PubMed ID: 15627709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione.
    Barták M; Hájek J; Vráblíková H; Dubová J
    Plant Biol (Stuttg); 2004 May; 6(3):333-41. PubMed ID: 15143442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves.
    Leipner J; Stamp P; Fracheboud Y
    Planta; 2000 May; 210(6):964-9. PubMed ID: 10872229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.
    Saruhan N; Terzi R; Saglam A; Kadioglu A
    Biol Res; 2009; 42(3):315-26. PubMed ID: 19915740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2.
    Pérez-López U; Robredo A; Lacuesta M; Sgherri C; Muñoz-Rueda A; Navari-Izzo F; Mena-Petite A
    Physiol Plant; 2009 Jan; 135(1):29-42. PubMed ID: 19121097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves.
    Matsuda R; Ohashi-Kaneko K; Fujiwara K; Kurata K
    Plant Cell Physiol; 2008 Apr; 49(4):664-70. PubMed ID: 18349045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains.
    Haghjou MM; Shariati M; Smirnoff N
    Physiol Plant; 2009 Mar; 135(3):272-80. PubMed ID: 19236661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosynthetic response to low sink demand after fruit removal in relation to photoinhibition and photoprotection in peach trees.
    Duan W; Fan PG; Wang LJ; Li WD; Yan ST; Li SH
    Tree Physiol; 2008 Jan; 28(1):123-32. PubMed ID: 17938121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants.
    Agüera E; Cabello P; de la Haba P
    Physiol Plant; 2010 Mar; 138(3):256-67. PubMed ID: 20051027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper.
    Tanyolaç D; Ekmekçi Y; Unalan S
    Chemosphere; 2007 Feb; 67(1):89-98. PubMed ID: 17109927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field.
    Lu C; Lu Q; Zhang J; Kuang T
    J Exp Bot; 2001 Sep; 52(362):1805-10. PubMed ID: 11520868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservation and dissipation of light energy as complementary processes: homoiohydric and poikilohydric autotrophs.
    Heber U; Lange OL; Shuvalov VA
    J Exp Bot; 2006; 57(6):1211-23. PubMed ID: 16551690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.