BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12885901)

  • 1. Feline immunodeficiency virus ORF-Ais required for virus particle formation and virus infectivity.
    Gemeniano MC; Sawai ET; Leutenegger CM; Sparger EE
    J Virol; 2003 Aug; 77(16):8819-30. PubMed ID: 12885901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feline immunodeficiency virus Orf-A localizes to the nucleus and induces cell cycle arrest.
    Gemeniano MC; Sawai ET; Sparger EE
    Virology; 2004 Aug; 325(2):167-74. PubMed ID: 15246256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a feline immunodeficiency virus gene which is essential for cell-free virus infectivity.
    Tomonaga K; Norimine J; Shin YS; Fukasawa M; Miyazawa T; Adachi A; Toyosaki T; Kawaguchi Y; Kai C; Mikami T
    J Virol; 1992 Oct; 66(10):6181-5. PubMed ID: 1382146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genome of feline immunodeficiency virus.
    Miyazawa T; Tomonaga K; Kawaguchi Y; Mikami T
    Arch Virol; 1994; 134(3-4):221-34. PubMed ID: 8129613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The feline immunodeficiency virus ORF-A gene facilitates efficient viral replication in established T-cell lines and peripheral blood lymphocytes.
    Tomonaga K; Miyazawa T; Sakuragi J; Mori T; Adachi A; Mikami T
    J Virol; 1993 Oct; 67(10):5889-95. PubMed ID: 7690413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accessory genes confer a high replication rate to virulent feline immunodeficiency virus.
    Troyer RM; Thompson J; Elder JH; VandeWoude S
    J Virol; 2013 Jul; 87(14):7940-51. PubMed ID: 23658451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of vif and ORF-A genes and AP-1 binding site in in vivo replication of feline immunodeficiency virus.
    Inoshima Y; Miyazawa T; Mikami T
    Arch Virol; 1998; 143(4):789-95. PubMed ID: 9638148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of gene expression directed by the long terminal repeat of the feline immunodeficiency virus.
    Sparger EE; Shacklett BL; Renshaw-Gegg L; Barry PA; Pedersen NC; Elder JH; Luciw PA
    Virology; 1992 Mar; 187(1):165-77. PubMed ID: 1310554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional domains in the feline immunodeficiency virus nucleocapsid protein.
    Manrique ML; Rauddi ML; González SA; Affranchino JL
    Virology; 2004 Sep; 327(1):83-92. PubMed ID: 15327900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro characterization of FIV-pPPR, a pathogenic molecular clone of feline immunodeficiency virus, and two drug-resistant pol gene mutants.
    McCrackin Stevenson MA; McBroom DG
    Am J Vet Res; 2001 Apr; 62(4):588-94. PubMed ID: 11327469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the encapsidation determinants of feline immunodeficiency virus.
    Kemler I; Barraza R; Poeschla EM
    J Virol; 2002 Dec; 76(23):11889-903. PubMed ID: 12414931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feline immunodeficiency virus can infect a human cell line (MOLT-4) but establishes a state of latency in the cells.
    Ikeda Y; Tomonaga K; Kawaguchi Y; Kohmoto M; Inoshima Y; Tohya Y; Miyazawa T; Kai C; Mikami T
    J Gen Virol; 1996 Aug; 77 ( Pt 8)():1623-30. PubMed ID: 8760408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feline immunodeficiency virus envelope glycoproteins antagonize tetherin through a distinctive mechanism that requires virion incorporation.
    Morrison JH; Guevara RB; Marcano AC; Saenz DT; Fadel HJ; Rogstad DK; Poeschla EM
    J Virol; 2014 Mar; 88(6):3255-72. PubMed ID: 24390322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the Rev transactivation and Rev-responsive elements of feline immunodeficiency virus.
    Phillips TR; Lamont C; Konings DA; Shacklett BL; Hamson CA; Luciw PA; Elder JH
    J Virol; 1992 Sep; 66(9):5464-71. PubMed ID: 1323707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The feline immunodeficiency virus vif gene is required for productive infection of feline peripheral blood mononuclear cells and monocyte-derived macrophages.
    Lockridge KM; Himathongkham S; Sawai ET; Chienand M; Sparger EE
    Virology; 1999 Aug; 261(1):25-30. PubMed ID: 10441553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and characterization of feline immunodeficiency virus proviral mutants that coexpress interferon gamma and green fluorescent protein.
    Gupta S; Leutenegger C; Dean G; Sparger E
    AIDS Res Hum Retroviruses; 2006 Apr; 22(4):342-9. PubMed ID: 16623638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The C/EBP site in the feline immunodeficiency virus (FIV) long terminal repeat (LTR) is necessary for its efficient replication and is also involved in the inhibition of FIV LTR-directed gene expression by pseudorabies virus ICP4.
    Kawaguchi Y; Tomonaga K; Maeda K; Ono M; Miyazawa T; Kohmoto M; Tohya Y; Mikami T
    Virology; 1995 Apr; 208(2):492-9. PubMed ID: 7747422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential cell tropism of feline immunodeficiency virus molecular clones in vivo.
    Dean GA; Himathongkham S; Sparger EE
    J Virol; 1999 Apr; 73(4):2596-603. PubMed ID: 10074104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and in vitro characterization of attenuated feline immunodeficiency virus long terminal repeat mutant viruses.
    Bigornia L; Lockridge KM; Sparger EE
    J Virol; 2001 Jan; 75(2):1054-60. PubMed ID: 11134320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The AP-1 binding site in the feline immunodeficiency virus long terminal repeat is not required for virus replication in feline T lymphocytes.
    Miyazawa T; Kohmoto M; Kawaguchi Y; Tomonaga K; Toyosaki T; Ikuta K; Adachi A; Mikami T
    J Gen Virol; 1993 Aug; 74 ( Pt 8)():1573-80. PubMed ID: 8393913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.