These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 12885953)

  • 21. Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae.
    Damerval C; Le Guilloux M; Jager M; Charon C
    Plant Physiol; 2007 Feb; 143(2):759-72. PubMed ID: 17189327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae).
    Juntheikki-Palovaara I; Tähtiharju S; Lan T; Broholm SK; Rijpkema AS; Ruonala R; Kale L; Albert VA; Teeri TH; Elomaa P
    Plant J; 2014 Sep; 79(5):783-96. PubMed ID: 24923429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry.
    Citerne HL; Reyes E; Le Guilloux M; Delannoy E; Simonnet F; Sauquet H; Weston PH; Nadot S; Damerval C
    Ann Bot; 2017 Feb; 119(3):367-378. PubMed ID: 28025288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution in action: following function in duplicated floral homeotic genes.
    Causier B; Castillo R; Zhou J; Ingram R; Xue Y; Schwarz-Sommer Z; Davies B
    Curr Biol; 2005 Aug; 15(16):1508-12. PubMed ID: 16111944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences.
    Olmstead RG; Kim KJ; Jansen RK; Wagstaff SJ
    Mol Phylogenet Evol; 2000 Jul; 16(1):96-112. PubMed ID: 10877943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales.
    Zhong J; Kellogg EA
    Am J Bot; 2015 Aug; 102(8):1260-7. PubMed ID: 26290549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct Regulatory Changes Underlying Differential Expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR Genes Associated with Petal Variations in Zygomorphic Flowers of Petrocosmea spp. of the Family Gesneriaceae.
    Yang X; Zhao XG; Li CQ; Liu J; Qiu ZJ; Dong Y; Wang YZ
    Plant Physiol; 2015 Nov; 169(3):2138-51. PubMed ID: 26351309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of CYCLOIDEA-like genes in Fabales: Insights into duplication patterns and the control of floral symmetry.
    Zhao Z; Hu J; Chen S; Luo Z; Luo D; Wen J; Tu T; Zhang D
    Mol Phylogenet Evol; 2019 Mar; 132():81-89. PubMed ID: 30508631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome.
    Preston JC; Martinez CC; Hileman LC
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2343-8. PubMed ID: 21282634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers.
    Bateman RM; Hilton J; Rudall PJ
    J Exp Bot; 2006; 57(13):3471-503. PubMed ID: 17056677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linking floral symmetry genes to breeding system evolution.
    Kalisz S; Ree RH; Sargent RD
    Trends Plant Sci; 2006 Dec; 11(12):568-73. PubMed ID: 17097332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Corolla monosymmetry: evolution of a morphological novelty in the Brassicaceae family.
    Busch A; Horn S; Mühlhausen A; Mummenhoff K; Zachgo S
    Mol Biol Evol; 2012 Apr; 29(4):1241-54. PubMed ID: 22135189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Floral gigantism in Rafflesiaceae.
    Davis CC; Latvis M; Nickrent DL; Wurdack KJ; Baum DA
    Science; 2007 Mar; 315(5820):1812. PubMed ID: 17218493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development.
    Liu C; Zhang J; Zhang N; Shan H; Su K; Zhang J; Meng Z; Kong H; Chen Z
    Mol Biol Evol; 2010 Jul; 27(7):1598-611. PubMed ID: 20147438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae.
    Citerne HL; Luo D; Pennington RT; Coen E; Cronk QC
    Plant Physiol; 2003 Mar; 131(3):1042-53. PubMed ID: 12644657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developmental genetics of floral symmetry evolution.
    Preston JC; Hileman LC
    Trends Plant Sci; 2009 Mar; 14(3):147-54. PubMed ID: 19231272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids.
    Horn S; Pabón-Mora N; Theuß VS; Busch A; Zachgo S
    Plant J; 2015 Feb; 81(4):559-71. PubMed ID: 25557238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators.
    Kim S; Koh J; Yoo MJ; Kong H; Hu Y; Ma H; Soltis PS; Soltis DE
    Plant J; 2005 Sep; 43(5):724-44. PubMed ID: 16115069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flower symmetry evolution: towards understanding the abominable mystery of angiosperm radiation.
    Busch A; Zachgo S
    Bioessays; 2009 Nov; 31(11):1181-90. PubMed ID: 19847818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perianth organization and intra-specific floral variability.
    Herrera J; Arista M; Ortiz PL
    Plant Biol (Stuttg); 2008 Nov; 10(6):704-10. PubMed ID: 18950427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.