These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12886456)

  • 1. Building bone tissue: matrices and scaffolds in physiology and biotechnology.
    Riminucci M; Bianco P
    Braz J Med Biol Res; 2003 Aug; 36(8):1027-36. PubMed ID: 12886456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering.
    Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL
    Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomaterials and bone mechanotransduction.
    Sikavitsas VI; Temenoff JS; Mikos AG
    Biomaterials; 2001 Oct; 22(19):2581-93. PubMed ID: 11519777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone and cartilage tissue engineering.
    Boyan BD; Lohmann CH; Romero J; Schwartz Z
    Clin Plast Surg; 1999 Oct; 26(4):629-45, ix. PubMed ID: 10553218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of osteoclasts in bone tissue engineering.
    Detsch R; Boccaccini AR
    J Tissue Eng Regen Med; 2015 Oct; 9(10):1133-49. PubMed ID: 24478169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering structurally organized cartilage and bone tissues.
    Sharma B; Elisseeff JH
    Ann Biomed Eng; 2004 Jan; 32(1):148-59. PubMed ID: 14964730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone modeling adaptation as a method for promoting development of bone tissue engineered construct in vitro.
    Chunqiu Z; Xizheng Z; Xin D; Weimin Z
    Med Hypotheses; 2007; 69(1):178-81. PubMed ID: 17236725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological basis of bone formation, remodeling, and repair-part II: extracellular matrix.
    Allori AC; Sailon AM; Warren SM
    Tissue Eng Part B Rev; 2008 Sep; 14(3):275-83. PubMed ID: 19183102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes.
    Mandal BB; Kundu SC
    Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering.
    Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN
    Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.
    Lv Q; Nair L; Laurencin CT
    J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology.
    Schantz JT; Hutmacher DW; Chim H; Ng KW; Lim TC; Teoh SH
    Cell Transplant; 2002; 11(2):125-38. PubMed ID: 12099636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endosteal-like extracellular matrix expression on melt electrospun written scaffolds.
    Muerza-Cascante ML; Shokoohmand A; Khosrotehrani K; Haylock D; Dalton PD; Hutmacher DW; Loessner D
    Acta Biomater; 2017 Apr; 52():145-158. PubMed ID: 28017869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaffold/Extracellular matrix hybrid constructs for bone-tissue engineering.
    Thibault RA; Mikos AG; Kasper FK
    Adv Healthc Mater; 2013 Jan; 2(1):13-24. PubMed ID: 23184883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro modeling of the bone/implant interface.
    Davies JE
    Anat Rec; 1996 Jun; 245(2):426-45. PubMed ID: 8769677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices.
    Endres M; Hutmacher DW; Salgado AJ; Kaps C; Ringe J; Reis RL; Sittinger M; Brandwood A; Schantz JT
    Tissue Eng; 2003 Aug; 9(4):689-702. PubMed ID: 13678447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering.
    Chen M; Le DQ; Baatrup A; Nygaard JV; Hein S; Bjerre L; Kassem M; Zou X; Bünger C
    Acta Biomater; 2011 May; 7(5):2244-55. PubMed ID: 21195810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in skeletal tissue engineering with hydrogels.
    Elisseeff J; Puleo C; Yang F; Sharma B
    Orthod Craniofac Res; 2005 Aug; 8(3):150-61. PubMed ID: 16022717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.