These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12887407)

  • 1. Subcellular distribution of L-type Ca2+ channels responsible for plateau potentials in motoneurons from the lumbar spinal cord of the turtle.
    Simon M; Perrier JF; Hounsgaard J
    Eur J Neurosci; 2003 Jul; 18(2):258-66. PubMed ID: 12887407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of L-type calcium channel Ca(V)1.3 in cat lumbar spinal cord--with emphasis on motoneurons.
    Zhang M; Sukiasyan N; Møller M; Bezprozvanny I; Zhang H; Wienecke J; Hultborn H
    Neurosci Lett; 2006 Oct; 407(1):42-7. PubMed ID: 16949207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of dendritic CaV1.3 channels in cat lumbar motoneurons: spatial distribution.
    Elbasiouny SM; Bennett DJ; Mushahwar VK
    J Neurophysiol; 2005 Dec; 94(6):3961-74. PubMed ID: 16120667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5-HT2 receptors promote plateau potentials in turtle spinal motoneurons by facilitating an L-type calcium current.
    Perrier JF; Hounsgaard J
    J Neurophysiol; 2003 Feb; 89(2):954-9. PubMed ID: 12574471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational estimation of the distribution of L-type Ca(2+) channels in motoneurons based on variable threshold of activation of persistent inward currents.
    Bui TV; Ter-Mikaelian M; Bedrossian D; Rose PK
    J Neurophysiol; 2006 Jan; 95(1):225-41. PubMed ID: 16267115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmitter regulation of plateau properties in turtle motoneurons.
    Svirskis G; Hounsgaard J
    J Neurophysiol; 1998 Jan; 79(1):45-50. PubMed ID: 9425175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendritic L-type calcium currents in mouse spinal motoneurons: implications for bistability.
    Carlin KP; Jones KE; Jiang Z; Jordan LM; Brownstone RM
    Eur J Neurosci; 2000 May; 12(5):1635-46. PubMed ID: 10792441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic release of serotonin induced by stimulation of the raphe nucleus promotes plateau potentials in spinal motoneurons of the adult turtle.
    Perrier JF; Delgado-Lezama R
    J Neurosci; 2005 Aug; 25(35):7993-9. PubMed ID: 16135756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of calcium currents in functionally mature mouse spinal motoneurons.
    Carlin KP; Jiang Z; Brownstone RM
    Eur J Neurosci; 2000 May; 12(5):1624-34. PubMed ID: 10792440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment.
    Booth V; Rinzel J; Kiehn O
    J Neurophysiol; 1997 Dec; 78(6):3371-85. PubMed ID: 9405551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabotropic modulation of motoneurons by scratch-like spinal network activity.
    Alaburda A; Hounsgaard J
    J Neurosci; 2003 Sep; 23(25):8625-9. PubMed ID: 14507961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent sodium and calcium currents in rat hypoglossal motoneurons.
    Powers RK; Binder MD
    J Neurophysiol; 2003 Jan; 89(1):615-24. PubMed ID: 12522206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats.
    Li Y; Bennett DJ
    J Neurophysiol; 2003 Aug; 90(2):857-69. PubMed ID: 12724367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimates of the location of L-type Ca2+ channels in motoneurons of different sizes: a computational study.
    Grande G; Bui TV; Rose PK
    J Neurophysiol; 2007 Jun; 97(6):4023-35. PubMed ID: 17428909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dedifferentiation of intrinsic response properties of motoneurons in organotypic cultures of the spinal cord of the adult turtle.
    Perrier JF; Noraberg J; Simon M; Hounsgaard J
    Eur J Neurosci; 2000 Jul; 12(7):2397-404. PubMed ID: 10947818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrotonic structure of motoneurons in the spinal cord of the turtle: inferences for the mechanisms of bistability.
    Svirskis G; Gutman A; Hounsgaard J
    J Neurophysiol; 2001 Jan; 85(1):391-8. PubMed ID: 11152739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of ryanodine and inositol triphosphate receptors in regulation of plateau potentials in turtle spinal motoneurons.
    Mejia-Gervacio S; Hounsgaard J; Diaz-Muñoz M
    Neuroscience; 2004; 123(1):123-30. PubMed ID: 14667447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of calcium channel CaV1.3 in cat spinal cord: light and electron microscopic immunohistochemical study.
    Zhang M; Møller M; Broman J; Sukiasyan N; Wienecke J; Hultborn H
    J Comp Neurol; 2008 Mar; 507(1):1109-27. PubMed ID: 18095323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N- and P/Q-type Ca2+ channels regulate synaptic efficacy between spinal dorsolateral funiculus terminals and motoneurons.
    Aguilar J; Escobedo L; Bautista W; Felix R; Delgado-Lezama R
    Biochem Biophys Res Commun; 2004 Apr; 317(2):551-7. PubMed ID: 15063793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative location of inhibitory synapses and persistent inward currents determines the magnitude and mode of synaptic amplification in motoneurons.
    Bui TV; Grande G; Rose PK
    J Neurophysiol; 2008 Feb; 99(2):583-94. PubMed ID: 18046006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.