These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12887415)

  • 1. Xenopus embryonic spinal neurons recorded in situ with patch-clamp electrodes--conditional oscillators after all?
    Aiken SP; Kuenzi FM; Dale N
    Eur J Neurosci; 2003 Jul; 18(2):333-43. PubMed ID: 12887415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The generation of antiphase oscillations and synchrony by a rebound-based vertebrate central pattern generator.
    Li WC; Merrison-Hort R; Zhang HY; Borisyuk R
    J Neurosci; 2014 Apr; 34(17):6065-77. PubMed ID: 24760866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional projection distances of spinal interneurons mediating reciprocal inhibition during swimming in Xenopus tadpoles.
    Soffe SR; Zhao FY; Roberts A
    Eur J Neurosci; 2001 Feb; 13(3):617-27. PubMed ID: 11168570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimentally derived model for the locomotor pattern generator in the Xenopus embryo.
    Dale N
    J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):489-510. PubMed ID: 8847642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Gating of Neuronal Activity by Intrinsic Properties in Distinct Motor Rhythms.
    Li WC
    J Neurosci; 2015 Jul; 35(27):9799-810. PubMed ID: 26156983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control.
    Soffe SR; Roberts A; Li WC
    J Physiol; 2009 Oct; 587(Pt 20):4829-44. PubMed ID: 19703959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles.
    Perrins R; Walford A; Roberts A
    J Neurosci; 2002 May; 22(10):4229-40. PubMed ID: 12019340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of locomotion rhythms without inhibition in vertebrates: the search for pacemaker neurons.
    Li WC
    Integr Comp Biol; 2011 Dec; 51(6):879-89. PubMed ID: 21562024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in spinal neuronal properties, motor network configuration, and neuromodulation at free-swimming stages of Xenopus tadpoles.
    Currie SP; Sillar KT
    J Neurophysiol; 2018 Mar; 119(3):786-795. PubMed ID: 29142093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for potassium currents in the generation of the swimming motor pattern of Xenopus embryos.
    Wall MJ; Dale N
    J Neurophysiol; 1994 Jul; 72(1):337-48. PubMed ID: 7965018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-component amino-acid-mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos.
    Dale N; Roberts A
    J Physiol; 1985 Jun; 363():35-59. PubMed ID: 2862278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The firing patterns of spinal neurons: in situ patch-clamp recordings reveal a key role for potassium currents.
    Winlove CI; Roberts A
    Eur J Neurosci; 2012 Oct; 36(7):2926-40. PubMed ID: 22775205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional properties of reticulospinal neurons in the early-swimming stage Xenopus embryo.
    van Mier P; ten Donkelaar HJ
    J Neurosci; 1989 Jan; 9(1):25-37. PubMed ID: 2913206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primitive roles for inhibitory interneurons in developing frog spinal cord.
    Li WC; Higashijima S; Parry DM; Roberts A; Soffe SR
    J Neurosci; 2004 Jun; 24(25):5840-8. PubMed ID: 15215306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of premotor interneuron populations on the frequency of the spinal pattern generator for swimming in Xenopus embryos: a simulation study.
    Wolf E; Roberts A
    Eur J Neurosci; 1995 Apr; 7(4):671-8. PubMed ID: 7620618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal inhibitory neurons that modulate cutaneous sensory pathways during locomotion in a simple vertebrate.
    Li WC; Soffe SR; Roberts A
    J Neurosci; 2002 Dec; 22(24):10924-34. PubMed ID: 12486187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic contribution to excitation in a spinal locomotor central pattern generator in Xenopus embryos.
    Perrins R; Roberts A
    J Neurophysiol; 1995 Mar; 73(3):1013-9. PubMed ID: 7608751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway.
    Li WC; Soffe SR; Roberts A
    J Neurophysiol; 2004 Aug; 92(2):895-904. PubMed ID: 15028739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord.
    Dale N
    J Physiol; 1985 Jun; 363():61-70. PubMed ID: 4020706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopaminergic modulation of spinal neurons and synaptic potentials in the lamprey spinal cord.
    Kemnitz CP
    J Neurophysiol; 1997 Jan; 77(1):289-98. PubMed ID: 9120571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.