These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 12887907)

  • 21. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins.
    Hays SL; Firmenich AA; Berg P
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6925-9. PubMed ID: 7624345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple interactions among the components of the recombinational DNA repair system in Schizosaccharomyces pombe.
    Tsutsui Y; Khasanov FK; Shinagawa H; Iwasaki H; Bashkirov VI
    Genetics; 2001 Sep; 159(1):91-105. PubMed ID: 11560889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules.
    Nimonkar AV; Sica RA; Kowalczykowski SC
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3077-82. PubMed ID: 19204284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae.
    Pâques F; Haber JE
    Microbiol Mol Biol Rev; 1999 Jun; 63(2):349-404. PubMed ID: 10357855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A.
    New JH; Sugiyama T; Zaitseva E; Kowalczykowski SC
    Nature; 1998 Jan; 391(6665):407-10. PubMed ID: 9450760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin.
    Jaskelioff M; Van Komen S; Krebs JE; Sung P; Peterson CL
    J Biol Chem; 2003 Mar; 278(11):9212-8. PubMed ID: 12514177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths.
    Paffett KS; Clikeman JA; Palmer S; Nickoloff JA
    DNA Repair (Amst); 2005 Jun; 4(6):687-98. PubMed ID: 15878310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The role of recombinational repair proteins in mating type switching in fission yeast cells].
    Vagin DA; Khasanov FK; Bashkirov VI
    Genetika; 2006 Apr; 42(4):487-93. PubMed ID: 16756067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional profile of the homologous recombination machinery and characterization of the EhRAD51 recombinase in response to DNA damage in Entamoeba histolytica.
    López-Casamichana M; Orozco E; Marchat LA; López-Camarillo C
    BMC Mol Biol; 2008 Apr; 9():35. PubMed ID: 18402694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and assays of Saccharomyces cerevisiae homologous recombination proteins.
    Van Komen S; Macris M; Sehorn MG; Sung P
    Methods Enzymol; 2006; 408():445-63. PubMed ID: 16793386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences.
    Ira G; Haber JE
    Mol Cell Biol; 2002 Sep; 22(18):6384-92. PubMed ID: 12192038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Live cell monitoring of double strand breaks in S. cerevisiae.
    Waterman DP; Zhou F; Li K; Lee CS; Tsabar M; Eapen VV; Mazzella A; Haber JE
    PLoS Genet; 2019 Mar; 15(3):e1008001. PubMed ID: 30822309
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular anatomy of the recombination mediator function of Saccharomyces cerevisiae Rad52.
    Seong C; Sehorn MG; Plate I; Shi I; Song B; Chi P; Mortensen U; Sung P; Krejci L
    J Biol Chem; 2008 May; 283(18):12166-74. PubMed ID: 18310075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway.
    Dresser ME; Ewing DJ; Conrad MN; Dominguez AM; Barstead R; Jiang H; Kodadek T
    Genetics; 1997 Oct; 147(2):533-44. PubMed ID: 9335591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The RAD52 epistasis group in mammalian double strand break repair.
    Petrini JH; Bressan DA; Yao MS
    Semin Immunol; 1997 Jun; 9(3):181-8. PubMed ID: 9200329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair.
    Wang X; Haber JE
    PLoS Biol; 2004 Jan; 2(1):E21. PubMed ID: 14737196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rad52 and Rad59 exhibit both overlapping and distinct functions.
    Feng Q; Düring L; de Mayolo AA; Lettier G; Lisby M; Erdeniz N; Mortensen UH; Rothstein R
    DNA Repair (Amst); 2007 Jan; 6(1):27-37. PubMed ID: 16987715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstitution of the strand invasion step of double-strand break repair using human Rad51 Rad52 and RPA proteins.
    McIlwraith MJ; Van Dyck E; Masson JY; Stasiak AZ; Stasiak A; West SC
    J Mol Biol; 2000 Nov; 304(2):151-64. PubMed ID: 11080452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52.
    Milne GT; Weaver DT
    Genes Dev; 1993 Sep; 7(9):1755-65. PubMed ID: 8370524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP-dependent and ATP-independent roles for the Rad54 chromatin remodeling enzyme during recombinational repair of a DNA double strand break.
    Wolner B; Peterson CL
    J Biol Chem; 2005 Mar; 280(11):10855-60. PubMed ID: 15653683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.