These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1288842)

  • 1. Utilization of tartaric acid and related compounds by yeasts: taxonomic implications.
    Fonseca A
    Can J Microbiol; 1992 Dec; 38(12):1242-51. PubMed ID: 1288842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization by yeasts of D-glucarate, galactarate, and L-tartarate is uncommon and occurs in strains of Cryptococcus and Trichosporon.
    Schneider H; Biely P; Latta R; Lee H; Dorscheid D; Levy-Rick S
    Can J Microbiol; 1990 Dec; 36(12):856-8. PubMed ID: 2081332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leucosporidium fellii sp. nov., a basidiomycetous yeast that degrades L(+)-tartaric acid.
    Gimenez-Jurado G; Van Uden N
    Antonie Van Leeuwenhoek; 1989; 55(2):133-41. PubMed ID: 2742370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of phenol by hydrocarbon assimilating yeasts.
    Hofmann KH; Schauer F
    Antonie Van Leeuwenhoek; 1988; 54(2):179-88. PubMed ID: 3395111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polysaccharides and phenolic compounds as substrate for yeasts isolated from rotten wood and description of Cryptococcus fagi sp.nov.
    Middelhoven WJ
    Antonie Van Leeuwenhoek; 2006 Jul; 90(1):57-67. PubMed ID: 16652205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of low molecular weight aromatic compounds by heterobasidiomycetous yeasts: taxonomic implications.
    Sampaio JP
    Can J Microbiol; 1999 Jun; 45(6):491-512. PubMed ID: 10453477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of L(+)-and D(-)-tartaric acids in different animal species.
    Gry J; Larsen JC
    Arch Toxicol Suppl; 1978; (1):351-3. PubMed ID: 277129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeastlike fungi. A literature review and an experimental approach.
    Middelhoven WJ
    Antonie Van Leeuwenhoek; 1993 Feb; 63(2):125-44. PubMed ID: 8259830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [FORMATION OF MALIC ACID, TARTARIC ACID AND SUCCINIC ACID BY DIFFERENT YEASTS].
    DRAWERT F; RAPP A; ULRICH W
    Naturwissenschaften; 1965 Jun; 52():306. PubMed ID: 14331117
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on the biochemistry of Penicillium charlesii. Influence of various dicarboxylic acids on galactocarolose synthesis.
    Jordan JM; Gander JE
    Biochem J; 1966 Sep; 100(3):694-701. PubMed ID: 5969282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylloplane yeasts from Portugal: seven novel anamorphic species in the Tremellales lineage of the Hymenomycetes (Basidiomycota) producing orange-coloured colonies.
    Inácio J; Portugal L; Spencer-Martins I; Fonseca A
    FEMS Yeast Res; 2005 Dec; 5(12):1167-83. PubMed ID: 16081324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of synthesis and secretion of polyol esters of fatty acids by four basidiomycetous yeast species in the order Sporidiobolales.
    Garay LA; Sitepu IR; Cajka T; Fiehn O; Cathcart E; Fry RW; Kanti A; Joko Nugroho A; Faulina SA; Stephanandra S; German JB; Boundy-Mills KL
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):923-936. PubMed ID: 28289902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green and brown colour effects in tremellaceous yeast fungi on Staib agar.
    Golubev WI; Staib F
    Mycoses; 2000; 43(1-2):1-5. PubMed ID: 10838839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing fungal production of galactaric acid.
    Barth D; Wiebe MG
    Appl Microbiol Biotechnol; 2017 May; 101(10):4033-4040. PubMed ID: 28191588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of tartaric acid isomers and citric acid in the biotyping of Salmonella typhimurium.
    Alfredsson GA; Barker RM; Old DC; Duguid JP
    J Hyg (Lond); 1972 Dec; 70(4):651-66. PubMed ID: 4567311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Habitat-specificity and diversity of culturable cold-adapted yeasts of a cold-based glacier in the Tianshan Mountains, northwestern China.
    Luo B; Sun H; Zhang Y; Gu Y; Yan W; Zhang R; Ni Y
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2311-2327. PubMed ID: 30483846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of organic acids and nitrogen source on alcoholic fermentation: study of their buffering capacity.
    Torija MJ; Beltran G; Novo M; Poblet M; Rozès N; Mas A; Guillamón JM
    J Agric Food Chem; 2003 Feb; 51(4):916-22. PubMed ID: 12568549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific transfer of 3H from D-[3-3H]gluconic acid into L-tartaric acid in vitaceous plants.
    Saito K
    Phytochemistry; 1994 Nov; 37(4):1017-22. PubMed ID: 7765653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive growth experiments with related pairs of tartrate-fermenting and tartrate-non-fermenting strains of Salmonella typhimurium: relevance to biotyping studies.
    Old DC; Barker RM; Alfredsson GA
    Zentralbl Bakteriol Mikrobiol Hyg A Med Mikrobiol Infekt Parasitol; 1983 Feb; 253(4):515-22. PubMed ID: 6344514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast species utilizing uric acid, adenine, n-alkylamines or diamines as sole source of carbon and energy.
    Middelhoven WJ; De Kievit H; Biesbroek AL
    Antonie Van Leeuwenhoek; 1985; 51(3):289-301. PubMed ID: 4091535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.