BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 12888505)

  • 41. Nucleobases Undergo Dynamic Rearrangements during RNA Tertiary Folding.
    Welty R; Hall KB
    J Mol Biol; 2016 Nov; 428(22):4490-4502. PubMed ID: 27693721
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diffusely bound Mg2+ ions slightly reorient stems I and II of the hammerhead ribozyme to increase the probability of formation of the catalytic core.
    Rueda D; Wick K; McDowell SE; Walter NG
    Biochemistry; 2003 Aug; 42(33):9924-36. PubMed ID: 12924941
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A folding "framework structure" of Tetrahymena group I intron.
    Zhang X; Guo C; Zhang W; Cao H; Xie H; Wang K; Liu C
    J Theor Biol; 2010 Dec; 267(4):495-501. PubMed ID: 20858505
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metal ion binding sites in a group II intron core.
    Sigel RK; Vaidya A; Pyle AM
    Nat Struct Biol; 2000 Dec; 7(12):1111-6. PubMed ID: 11101891
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stabilization of RNA structure by Mg ions. Specific and non-specific effects.
    Laing LG; Gluick TC; Draper DE
    J Mol Biol; 1994 Apr; 237(5):577-87. PubMed ID: 8158638
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Divalent ion competition reveals reorganization of an RNA ion atmosphere upon folding.
    Trachman RJ; Draper DE
    Nucleic Acids Res; 2017 May; 45(8):4733-4742. PubMed ID: 28115628
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks.
    Downs WD; Cech TR
    RNA; 1996 Jul; 2(7):718-32. PubMed ID: 8756414
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Association of a group I intron with its splice junction in 50S ribosomes: implications for intron toxicity.
    Nikolcheva T; Woodson SA
    RNA; 1997 Sep; 3(9):1016-27. PubMed ID: 9292500
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RNA helix stability in mixed Na+/Mg2+ solution.
    Tan ZJ; Chen SJ
    Biophys J; 2007 May; 92(10):3615-32. PubMed ID: 17325014
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme.
    Bevilacqua PC; Sugimoto N; Turner DH
    Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of counterion condensation in folding of the Tetrahymena ribozyme. II. Counterion-dependence of folding kinetics.
    Heilman-Miller SL; Pan J; Thirumalai D; Woodson SA
    J Mol Biol; 2001 May; 309(1):57-68. PubMed ID: 11491301
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Finding a needle in the haystack: computational modeling of Mg2+ binding in the active site of protein farnesyltransferase.
    Yang Y; Chakravorty DK; Merz KM
    Biochemistry; 2010 Nov; 49(44):9658-66. PubMed ID: 20923173
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling study on the cleavage step of the self-splicing reaction in group I introns.
    Setlik RF; Garduno-Juarez R; Manchester JI; Shibata M; Ornstein RL; Rein R
    J Biomol Struct Dyn; 1993 Jun; 10(6):945-72. PubMed ID: 8357544
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distinct sites of phosphorothioate substitution interfere with folding and splicing of the Anabaena group I intron.
    Lupták A; Doudna JA
    Nucleic Acids Res; 2004; 32(7):2272-80. PubMed ID: 15107495
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural metals in the group I intron: a ribozyme with a multiple metal ion core.
    Stahley MR; Adams PL; Wang J; Strobel SA
    J Mol Biol; 2007 Sep; 372(1):89-102. PubMed ID: 17612557
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of Escherichia coli DbpA with 23S rRNA in different functional states of the enzyme.
    Karginov FV; Uhlenbeck OC
    Nucleic Acids Res; 2004; 32(10):3028-32. PubMed ID: 15173385
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection.
    Zheng H; Shabalin IG; Handing KB; Bujnicki JM; Minor W
    Nucleic Acids Res; 2015 Apr; 43(7):3789-801. PubMed ID: 25800744
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties.
    Goytain A; Quamme GA
    BMC Genomics; 2005 Apr; 6():48. PubMed ID: 15804357
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Understanding nucleic acid-ion interactions.
    Lipfert J; Doniach S; Das R; Herschlag D
    Annu Rev Biochem; 2014; 83():813-41. PubMed ID: 24606136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.