These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12888532)

  • 1. A simple two-step, 'hit and fix' method to generate subtle mutations in BACs using short denatured PCR fragments.
    Yang Y; Sharan SK
    Nucleic Acids Res; 2003 Aug; 31(15):e80. PubMed ID: 12888532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using recombineering to generate point mutations: the oligonucleotide-based "hit and fix" method.
    Chang S; Stauffer S; Sharan SK
    Methods Mol Biol; 2012; 852():111-20. PubMed ID: 22328429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insertion of modifications in the beta-globin locus using GET recombination with single-stranded oligonucleotides and denatured PCR fragments.
    Jamsai D; Orford M; Fucharoen S; Williamson R; Ioannou PA
    Mol Biotechnol; 2003 Jan; 23(1):29-36. PubMed ID: 12611267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid engineering of bacterial artificial chromosomes using oligonucleotides.
    Swaminathan S; Ellis HM; Waters LS; Yu D; Lee EC; Court DL; Sharan SK
    Genesis; 2001 Jan; 29(1):14-21. PubMed ID: 11135458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of overlapping bacterial artificial chromosomes by a two-step recombinogenic engineering method.
    Zhang XM; Huang JD
    Nucleic Acids Res; 2003 Aug; 31(15):e81. PubMed ID: 12888533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombineering linear BACs.
    Chen Q; Narayanan K
    Methods Mol Biol; 2015; 1227():27-54. PubMed ID: 25239740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombining overlapping BACs into single large BACs.
    Kotzamanis G; Kotsinas A
    Methods Mol Biol; 2015; 1227():123-39. PubMed ID: 25239744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rapid method for targeted modification and screening of recombinant bacterial artificial chromosome.
    Misulovin Z; Yang XW; Yu W; Heintz N; Meffre E
    J Immunol Methods; 2001 Nov; 257(1-2):99-105. PubMed ID: 11687243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for rapidly generating gene-targeting vectors by engineering BACs through homologous recombination in bacteria.
    Cotta-de-Almeida V; Schonhoff S; Shibata T; Leiter A; Snapper SB
    Genome Res; 2003 Sep; 13(9):2190-4. PubMed ID: 12915491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombining overlapping BACs into a single larger BAC.
    Kotzamanis G; Huxley C
    BMC Biotechnol; 2004 Jan; 4():1. PubMed ID: 14709179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short homologies efficiently generate detectable homologous recombination events.
    Osahor AN; Tan CY; Sim EU; Lee CW; Narayanan K
    Anal Biochem; 2014 Oct; 462():26-8. PubMed ID: 24929088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient and precise engineering of a 200 kb beta-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system.
    Narayanan K; Williamson R; Zhang Y; Stewart AF; Ioannou PA
    Gene Ther; 1999 Mar; 6(3):442-7. PubMed ID: 10435094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General method for the modification of different BAC types and the rapid generation of BAC transgenic mice.
    Sparwasser T; Gong S; Li JY; Eberl G
    Genesis; 2004 Jan; 38(1):39-50. PubMed ID: 14755803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method for generating point mutations in bacterial artificial chromosomes by homologous recombination in Escherichia coli.
    Lalioti M; Heath J
    Nucleic Acids Res; 2001 Feb; 29(3):E14. PubMed ID: 11160916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Isolation of Seamless Mutant Bacterial Artificial Chromosomes.
    Lyozin GT; Kosaka Y; Bhattacharje G; Yost HJ; Brunelli L
    Curr Protoc Mol Biol; 2017 Apr; 118():8.6.1-8.6.29. PubMed ID: 28369677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifying bacteriophage lambda with recombineering.
    Thomason LC; Oppenheim AB; Court DL
    Methods Mol Biol; 2009; 501():239-51. PubMed ID: 19066825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering adenovirus genome by bacterial artificial chromosome (BAC) technology.
    Ruzsics Z; Lemnitzer F; Thirion C
    Methods Mol Biol; 2014; 1089():143-58. PubMed ID: 24132484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general method to modify BACs to generate large recombinant DNA fragments.
    Shen W; Huang Y; Tang Y; Liu DP; Liang CC
    Mol Biotechnol; 2005 Nov; 31(3):181-6. PubMed ID: 16230767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial artificial chromosome engineering.
    Swaminathan S; Sharan SK
    Methods Mol Biol; 2004; 256():89-106. PubMed ID: 15024162
    [No Abstract]   [Full Text] [Related]  

  • 20. Gene Targeted Mice with Conditional Knock-In (-Out) of NMDAR Mutations.
    Sprengel R; Eltokhi A; Single FN
    Methods Mol Biol; 2017; 1677():201-230. PubMed ID: 28986875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.