These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12888533)

  • 21. Simple and highly efficient BAC recombineering using galK selection.
    Warming S; Costantino N; Court DL; Jenkins NA; Copeland NG
    Nucleic Acids Res; 2005 Feb; 33(4):e36. PubMed ID: 15731329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic manipulation of poxviruses using bacterial artificial chromosome recombineering.
    Cottingham MG
    Methods Mol Biol; 2012; 890():37-57. PubMed ID: 22688760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid construction of a Bacterial Artificial Chromosomal (BAC) expression vector using designer DNA fragments.
    Chen C; Zhao X; Jin Y; Zhao ZK; Suh JW
    Plasmid; 2014 Nov; 76():79-86. PubMed ID: 25454071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering adenovirus genome by bacterial artificial chromosome (BAC) technology.
    Ruzsics Z; Lemnitzer F; Thirion C
    Methods Mol Biol; 2014; 1089():143-58. PubMed ID: 24132484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simple two-step, 'hit and fix' method to generate subtle mutations in BACs using short denatured PCR fragments.
    Yang Y; Sharan SK
    Nucleic Acids Res; 2003 Aug; 31(15):e80. PubMed ID: 12888532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli.
    Wong QN; Ng VC; Lin MC; Kung HF; Chan D; Huang JD
    Nucleic Acids Res; 2005 Mar; 33(6):e59. PubMed ID: 15800210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new method for rapidly generating gene-targeting vectors by engineering BACs through homologous recombination in bacteria.
    Cotta-de-Almeida V; Schonhoff S; Shibata T; Leiter A; Snapper SB
    Genome Res; 2003 Sep; 13(9):2190-4. PubMed ID: 12915491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. REPLACR-mutagenesis, a one-step method for site-directed mutagenesis by recombineering.
    Trehan A; Kiełbus M; Czapinski J; Stepulak A; Huhtaniemi I; Rivero-Müller A
    Sci Rep; 2016 Jan; 6():19121. PubMed ID: 26750263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homologous recombination using bacterial artificial chromosomes.
    Lai C; Fischer T; Munroe E
    Cold Spring Harb Protoc; 2015 Feb; 2015(2):180-90. PubMed ID: 25646493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct Isolation of Seamless Mutant Bacterial Artificial Chromosomes.
    Lyozin GT; Kosaka Y; Bhattacharje G; Yost HJ; Brunelli L
    Curr Protoc Mol Biol; 2017 Apr; 118():8.6.1-8.6.29. PubMed ID: 28369677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intact recombineering of highly repetitive DNA requires reduced induction of recombination enzymes and improved host viability.
    Narayanan K
    Anal Biochem; 2008 Apr; 375(2):394-6. PubMed ID: 18267098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo cloning of large chromosomal segments into a BAC derivative by generalized transduction and recombineering in Salmonella enterica.
    Kato A
    J Gen Appl Microbiol; 2016 Nov; 62(5):225-232. PubMed ID: 27666751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient conditional knockout targeting vector construction using co-selection BAC recombineering (CoSBR).
    Newman RJ; Roose-Girma M; Warming S
    Nucleic Acids Res; 2015 Oct; 43(19):e124. PubMed ID: 26089387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An easy and versatile 2-step protocol for targeted modification and subcloning of DNA from bacterial artificial chromosomes using non-commercial plasmids.
    Hartwich H; Nothwang HG
    BMC Res Notes; 2012 Mar; 5():156. PubMed ID: 22433714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering lacZ Reporter gene into an ephA8 bacterial artificial chromosome using a highly efficient bacterial recombination system.
    Kim Y; Song E; Choi S; Park S
    J Biochem Mol Biol; 2007 Sep; 40(5):656-61. PubMed ID: 17927897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cryptic loxP sites in mammalian genomes: genome-wide distribution and relevance for the efficiency of BAC/PAC recombineering techniques.
    Semprini S; Troup TJ; Kotelevtseva N; King K; Davis JR; Mullins LJ; Chapman KE; Dunbar DR; Mullins JJ
    Nucleic Acids Res; 2007; 35(5):1402-10. PubMed ID: 17284462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using recombineering to generate point mutations:galK-based positive-negative selection method.
    Biswas K; Stauffer S; Sharan SK
    Methods Mol Biol; 2012; 852():121-31. PubMed ID: 22328430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of an infectious clone of canine herpesvirus genome as a bacterial artificial chromosome.
    Arii J; Hushur O; Kato K; Kawaguchi Y; Tohya Y; Akashi H
    Microbes Infect; 2006 Apr; 8(4):1054-63. PubMed ID: 16515874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short homologies efficiently generate detectable homologous recombination events.
    Osahor AN; Tan CY; Sim EU; Lee CW; Narayanan K
    Anal Biochem; 2014 Oct; 462():26-8. PubMed ID: 24929088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recombineering: genetic engineering in bacteria using homologous recombination.
    Thomason L; Court DL; Bubunenko M; Costantino N; Wilson H; Datta S; Oppenheim A
    Curr Protoc Mol Biol; 2007 Apr; Chapter 1():Unit 1.16. PubMed ID: 18265390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.