BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12888993)

  • 1. A preliminary study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffold in vivo.
    Damien E; Hing K; Saeed S; Revell PA
    J Biomed Mater Res A; 2003 Aug; 66(2):241-6. PubMed ID: 12888993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prefabrication of vascularized bone graft using a combination of fibroblast growth factor-2 and vascular bundle implantation into a novel interconnected porous calcium hydroxyapatite ceramic.
    Nakasa T; Ishida O; Sunagawa T; Nakamae A; Yasunaga Y; Agung M; Ochi M
    J Biomed Mater Res A; 2005 Nov; 75(2):350-5. PubMed ID: 16088890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Application of elemental microanalysis for estimation of osteoinduction and osteoconduction of hydroxyapatite bone implants].
    Dawidowicz A; Pielka S; Paluch D; Kuryszko J; Staniszewska-Kuś J; Solski L
    Polim Med; 2005; 35(1):3-14. PubMed ID: 16050072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition.
    Porter AE
    Micron; 2006; 37(8):681-8. PubMed ID: 16632368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced bone ingrowth into hydroxyapatite with interconnected pores by Electrical Polarization.
    Itoh S; Nakamura S; Nakamura M; Shinomiya K; Yamashita K
    Biomaterials; 2006 Nov; 27(32):5572-9. PubMed ID: 16876861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes.
    Hing KA; Best SM; Tanner KE; Bonfield W; Revell PA
    J Biomed Mater Res A; 2004 Jan; 68(1):187-200. PubMed ID: 14661264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of dense and porous hydroxyapatite implants and tissue response in rat femoral defects.
    Andrade JC; Camilli JA; Kawachi EY; Bertran CA
    J Biomed Mater Res; 2002 Oct; 62(1):30-6. PubMed ID: 12124784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo comparison of the osseointegration of vacuum plasma sprayed titanium- and hydroxyapatite-coated implants.
    Aebli N; Krebs J; Stich H; Schawalder P; Walton M; Schwenke D; Gruner H; Gasser B; Theis JC
    J Biomed Mater Res A; 2003 Aug; 66(2):356-63. PubMed ID: 12889006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of hydroxyapatite microstructure on human bone cell response.
    Rouahi M; Gallet O; Champion E; Dentzer J; Hardouin P; Anselme K
    J Biomed Mater Res A; 2006 Aug; 78(2):222-35. PubMed ID: 16628709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteointegration of bioactive glass-coated and uncoated zirconia in osteopenic bone: an in vivo experimental study.
    Aldini NN; Fini M; Giavaresi G; Martini L; Dubini B; Ponzi Bossi MG; Rustichelli F; Krajewski A; Ravaglioli A; Mazzocchi M; Giardino R
    J Biomed Mater Res A; 2004 Feb; 68(2):264-72. PubMed ID: 14704968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histological and scanning electron microscopy analyses of bone/implant interface using the novel Bonelike synthetic bone graft.
    Gutierres M; Hussain NS; Lopes MA; Afonso A; Cabral AT; Almeida L; Santos JD
    J Orthop Res; 2006 May; 24(5):953-8. PubMed ID: 16609968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of prefabricated vascularized bone graft using the combination of FGF-2 and vascular bundle implantation within hydroxyapatite for osteointegration.
    Nakasa T; Ishida O; Sunagawa T; Nakamae A; Yokota K; Adachi N; Ochi M
    J Biomed Mater Res A; 2008 Jun; 85(4):1090-5. PubMed ID: 17937419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Repairing segmental radial bone defect with poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/sol-gel bioactive glass composite porous scaffold].
    Yu SJ; Qiu GX; Xin DJ; Chen XF; Zheng YD; Wang YJ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2005 Apr; 27(2):185-9. PubMed ID: 15960263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model.
    Stubbs D; Deakin M; Chapman-Sheath P; Bruce W; Debes J; Gillies RM; Walsh WR
    Biomaterials; 2004 Sep; 25(20):5037-44. PubMed ID: 15109866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds.
    Hing KA; Revell PA; Smith N; Buckland T
    Biomaterials; 2006 Oct; 27(29):5014-26. PubMed ID: 16790272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral quantitative computed tomography in evaluation of bioactive glass incorporation with bone.
    Välimäki VV; Moritz N; Yrjans JJ; Dalstra M; Aro HT
    Biomaterials; 2005 Nov; 26(33):6693-703. PubMed ID: 15941582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
    Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS
    Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A comparative morphometric and histologic study of five bone substitute materials].
    Chen L; Klaes W; Assenmacher S
    Zhonghua Yi Xue Za Zhi; 1996 Jul; 76(7):527-30. PubMed ID: 9275505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of surface modification of a porous TiO2/perlite composite on the ingrowth of bone tissue in vivo.
    Erli HJ; Rüger M; Ragoss C; Jahnen-Dechent W; Hollander DA; Paar O; von Walter M
    Biomaterials; 2006 Mar; 27(8):1270-6. PubMed ID: 16139880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.