These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 12888993)

  • 61. Laser technology in orthopedics: preliminary study on low power laser therapy to improve the bone-biomaterial interface.
    Guzzardella GA; Torricelli P; Nicoli Aldini N; Giardino R
    Int J Artif Organs; 2001 Dec; 24(12):898-902. PubMed ID: 11831596
    [TBL] [Abstract][Full Text] [Related]  

  • 62. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone.
    Abshagen K; Schrodi I; Gerber T; Vollmar B
    J Biomed Mater Res A; 2009 Nov; 91(2):557-66. PubMed ID: 18985779
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The interaction of PCP and HAp in vivo.
    Brown P
    J Bone Miner Res; 1997 Sep; 12(9):1512-3. PubMed ID: 9286769
    [No Abstract]   [Full Text] [Related]  

  • 64. Evolution of the local calcium content around irradiated beta-tricalcium phosphate ceramic implants: in vivo study in the rabbit.
    Le Huec JC; Clément D; Brouillaud B; Barthe N; Dupuy B; Foliguet B; Basse-Cathalinat B
    Biomaterials; 1998; 19(7-9):733-8. PubMed ID: 9663747
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Early morphofunctional response of contact tissue after intraosal implantation in rabbit jaw of pure synthetic hydroxyapatite (HAp) bioceramic materials and HAp saturated with lidocaine.
    Salma I; Pilmane M; Skagers A; Vetra J; Salms G; Berzina-Cimdina L; Serzane R
    Stomatologija; 2009; 11(4):113-8. PubMed ID: 20179398
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Polymethylmethacrylate composites: disturbed bone formation at the surface of bioactive glass and hydroxyapatite.
    Heikkilä JT; Aho AJ; Kangasniemi I; Yli-Urpo A
    Biomaterials; 1996 Sep; 17(18):1755-60. PubMed ID: 8879512
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Morphological study of biocompatibility of the material on the bases of bone collagen saturated by sulphated glycosaminoglycans].
    Volodina DN; Panin AM; Larionov EV; Avtandilov GG
    Stomatologiia (Mosk); 2008; 87(3):9-12. PubMed ID: 18577915
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Formation of hydroxyapatite on titanium implants in vivo precedes bone-formation during healing.
    Malmberg P; Bigdeli N; Jensen J; Nygren H
    Biointerphases; 2017 Oct; 12(4):041002. PubMed ID: 29078701
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A study of structure and degradation of nonpolymeric biomaterials implanted in bone using reflected and transmitted light microscopy.
    Frayssinet P; Tourenne F; Primout I; Delga C; Sergent E; Besse C; Conte P; Guilhem A
    Biotech Histochem; 1993 Nov; 68(6):333-41. PubMed ID: 8292657
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Transmission electron microscopy of the interface between bone and pseudowollastonite implant.
    De Aza PN; Luklinska ZB; Anseau MR; Guitian F; De Aza S
    J Microsc; 2001 Jan; 201(Pt 1):33-43. PubMed ID: 11136437
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Morphological and structural study of pseudowollastonite implants in bone.
    De Aza PN; Luklinska ZB; Martinez A; Anseau MR; Guitian F; De Aza S
    J Microsc; 2000 Jan; 197(Pt 1):60-7. PubMed ID: 10620149
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Release characteristics of bone‑like hydroxyapatite/poly amino acid loaded with rifapentine microspheres in vivo.
    Liu Y; Zhu J; Jiang D
    Mol Med Rep; 2017 Aug; 16(2):1425-1430. PubMed ID: 28627673
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Two-year biocompatibility study of ORNL graphite.
    Kenner GH; Williams WS; Lovell JE; Eatherly WP
    J Biomed Mater Res; 1975 Jul; 9(4):67-72. PubMed ID: 1176511
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix.
    Jusoh N; Oh S; Kim S; Kim J; Jeon NL
    Lab Chip; 2015 Oct; 15(20):3984-8. PubMed ID: 26288174
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation.
    Ros-Tárraga P; Mazón P; Rodríguez MA; Meseguer-Olmo L; De Aza PN
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773906
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Responses of bone to titania-hydroxyapatite composite and nacreous implants: a preliminary comparison by in situ hybridization.
    Liao H; Brandsten C; Lundmark C; Wurtz T; Li J
    J Mater Sci Mater Med; 1997 Dec; 8(12):823-7. PubMed ID: 15348799
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Synthetic Calcium-Phosphate Materials for Bone Grafting.
    Mishchenko O; Yanovska A; Kosinov O; Maksymov D; Moskalenko R; Ramanavicius A; Pogorielov M
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765676
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chitosan-Collagen 3D Matrix Mimics Trabecular Bone and Regulates RANKL-Mediated Paracrine Cues of Differentiated Osteoblast and Mesenchymal Stem Cells for Bone Marrow Macrophage-Derived Osteoclastogenesis.
    Elango J; Saravanakumar K; Rahman SU; Henrotin Y; Regenstein JM; Wu W; Bao B
    Biomolecules; 2019 May; 9(5):. PubMed ID: 31060346
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Physical Stimulations for Bone and Cartilage Regeneration.
    Huang X; Das R; Patel A; Nguyen TD
    Regen Eng Transl Med; 2018 Dec; 4(4):216-237. PubMed ID: 30740512
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration.
    Short AR; Koralla D; Deshmukh A; Wissel B; Stocker B; Calhoun M; Dean D; Winter JO
    J Mater Chem B; 2015 Oct; 3(40):7818-7830. PubMed ID: 26693013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.