BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 12889004)

  • 1. Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on Bioglass-filled polylactide foams.
    Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R
    J Biomed Mater Res A; 2003 Aug; 66(2):335-46. PubMed ID: 12889004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation.
    Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R
    Biomaterials; 2004 Aug; 25(18):4185-94. PubMed ID: 15046908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds.
    Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR
    J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the connectivity properties of Bioglass -filled polylactide foam scaffolds by image analysis and impedance spectroscopy.
    Blacher S; Maquet V; Jérôme R; Pirard JP; Boccaccini AR
    Acta Biomater; 2005 Sep; 1(5):565-74. PubMed ID: 16701836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass particles for tissue engineering applications.
    Boccaccini AR; Notingher I; Maquet V; Jérôme R
    J Mater Sci Mater Med; 2003 May; 14(5):443-50. PubMed ID: 15348448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering.
    Blaker JJ; Maquet V; Jérôme R; Boccaccini AR; Nazhat SN
    Acta Biomater; 2005 Nov; 1(6):643-52. PubMed ID: 16701845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Preparation and degradation of poly(DL-lactide)/calcium phosphates porous scaffolds].
    Quan D; Liao K; Luo B; Lu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):174-7. PubMed ID: 15143533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term in vitro degradation of PDLLA/bioglass bone scaffolds in acellular simulated body fluid.
    Blaker JJ; Nazhat SN; Maquet V; Boccaccini AR
    Acta Biomater; 2011 Feb; 7(2):829-40. PubMed ID: 20849987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications.
    Roether JA; Boccaccini AR; Hench LL; Maquet V; Gautier S; Jérĵme R
    Biomaterials; 2002 Sep; 23(18):3871-8. PubMed ID: 12164192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo analysis of macroporous biodegradable poly(D,L-lactide-co-glycolide) scaffolds containing bioactive glass.
    Day RM; Maquet V; Boccaccini AR; Jérôme R; Forbes A
    J Biomed Mater Res A; 2005 Dec; 75(4):778-87. PubMed ID: 16082717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment.
    Verrier S; Blaker JJ; Maquet V; Hench LL; Boccaccini AR
    Biomaterials; 2004 Jul; 25(15):3013-21. PubMed ID: 14967534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface transformations of Bioglass 45S5 during scaffold synthesis for bone tissue engineering.
    Abdollahi S; Ma AC; Cerruti M
    Langmuir; 2013 Feb; 29(5):1466-74. PubMed ID: 23305513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering.
    Roether JA; Gough JE; Boccaccini AR; Hench LL; Maquet V; Jérôme R
    J Mater Sci Mater Med; 2002 Dec; 13(12):1207-14. PubMed ID: 15348667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactivity of polyurethane-based scaffolds coated with Bioglass.
    Bil M; Ryszkowska J; Roether JA; Bretcanu O; Boccaccini AR
    Biomed Mater; 2007 Jun; 2(2):93-101. PubMed ID: 18458441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds.
    Dziadek M; Pawlik J; Menaszek E; Stodolak-Zych E; Cholewa-Kowalska K
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1580-93. PubMed ID: 25533304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of bioactive and resorbable polylactide/Bioglass composites by FTIR spectroscopic imaging.
    Kazarian SG; Chan KL; Maquet V; Boccaccini AR
    Biomaterials; 2004 Aug; 25(18):3931-8. PubMed ID: 15046883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.
    Shikinami Y; Okuno M
    Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds.
    Chen QZ; Thouas GA
    Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass composite foam scaffolds in vitro.
    Helen W; Gough JE
    Acta Biomater; 2008 Mar; 4(2):230-43. PubMed ID: 18023627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.