BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 12889004)

  • 21. Novel poly(hydroxyalkanoates)-based composites containing Bioglass® and calcium sulfate for bone tissue engineering.
    García-García JM; Garrido L; Quijada-Garrido I; Kaschta J; Schubert DW; Boccaccini AR
    Biomed Mater; 2012 Oct; 7(5):054105. PubMed ID: 22972204
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gel-derived bioglass as a compound of hydroxyapatite composites.
    Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM
    Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and characterization of biodegradable poly(D,L-lactide) and surface-modified bioactive glass composites as bone repair materials.
    Zhang du J; Zhang LF; Xiong ZC; Bai W; Xiong CD
    J Mater Sci Mater Med; 2009 Oct; 20(10):1971-8. PubMed ID: 19449200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Premature degradation of poly(alpha-hydroxyesters) during thermal processing of Bioglass-containing composites.
    Blaker JJ; Bismarck A; Boccaccini AR; Young AM; Nazhat SN
    Acta Biomater; 2010 Mar; 6(3):756-62. PubMed ID: 19683603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Poly(D,L-lactic acid) coated 45S5 Bioglass-based scaffolds: processing and characterization.
    Chen QZ; Boccaccini AR
    J Biomed Mater Res A; 2006 Jun; 77(3):445-57. PubMed ID: 16444684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tailoring the morphology of high molecular weight PLLA scaffolds through bioglass addition.
    Barroca N; Daniel-da-Silva AL; Vilarinho PM; Fernandes MH
    Acta Biomater; 2010 Sep; 6(9):3611-20. PubMed ID: 20350622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Porous poly(L-lactic acid)/apatite composites created by biomimetic process.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Jun; 45(4):285-93. PubMed ID: 10321700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of macroporous biodegradable poly(L-lactide-co-epsilon-caprolactone) foams and characterization by mercury intrusion porosimetry, image analysis, and impedance spectroscopy.
    Maquet V; Blacher S; Pirard R; Pirard JP; Vyakarnam MN; Jérôme R
    J Biomed Mater Res A; 2003 Aug; 66(2):199-213. PubMed ID: 12888989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication and characterization of biodegradable poly(3-hydroxybutyrate) composite containing bioglass.
    Misra SK; Nazhat SN; Valappil SP; Moshrefi-Torbati M; Wood RJ; Roy I; Boccaccini AR
    Biomacromolecules; 2007 Jul; 8(7):2112-9. PubMed ID: 17530893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing the biological activity of chitosan and controlling the degradation by nanoscale interaction with bioglass.
    Ravarian R; Craft M; Dehghani F
    J Biomed Mater Res A; 2015 Sep; 103(9):2898-908. PubMed ID: 25690303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of poly(alpha-hydroxy acid) foam scaffolds using multiple solvent systems.
    Hu Y; Grainger DW; Winn SR; Hollinger JO
    J Biomed Mater Res; 2002 Mar; 59(3):563-72. PubMed ID: 11774315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of human bone marrow stromal cell growth on biodegradable polymer/bioglass composites.
    Yang XB; Webb D; Blaker J; Boccaccini AR; Maquet V; Cooper C; Oreffo RO
    Biochem Biophys Res Commun; 2006 Apr; 342(4):1098-107. PubMed ID: 16516859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new hydroxyapatite-based biocomposite for bone replacement.
    Bellucci D; Sola A; Gazzarri M; Chiellini F; Cannillo V
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1091-101. PubMed ID: 23827547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional porous bioscaffolds for bone tissue regeneration: fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study.
    Mallick KK; Winnett J; van Grunsven W; Lapworth J; Reilly GC
    J Biomed Mater Res A; 2012 Nov; 100(11):2948-59. PubMed ID: 22696264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and characterization of Bioglass-based bone grafts with Gelatine substitution for biomedical applications.
    Aksakal B; Demirel M
    Biomed Mater Eng; 2017; 28(2):159-168. PubMed ID: 28372268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers.
    Cui W; Li X; Zhou S; Weng J
    J Biomed Mater Res A; 2007 Sep; 82(4):831-41. PubMed ID: 17326137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro degradation of porous poly(L-lactic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Aug; 21(15):1595-605. PubMed ID: 10885732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds.
    Kim HW; Knowles JC; Kim HE
    J Biomed Mater Res A; 2005 Feb; 72(2):136-45. PubMed ID: 15549783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of bioactive glass-ceramic foams mimicking human bone portions for regenerative medicine.
    Rainer A; Giannitelli SM; Abbruzzese F; Traversa E; Licoccia S; Trombetta M
    Acta Biomater; 2008 Mar; 4(2):362-9. PubMed ID: 17920344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.