These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 12889004)

  • 61. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.
    Boccardi E; Melli V; Catignoli G; Altomare L; Jahromi MT; Cerruti M; Lefebvre LP; De Nardo L
    Biomed Mater; 2016 Feb; 11(1):015005. PubMed ID: 26836444
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nanoscale chemical interaction enhances the physical properties of bioglass composites.
    Ravarian R; Zhong X; Barbeck M; Ghanaati S; Kirkpatrick CJ; Murphy CM; Schindeler A; Chrzanowski W; Dehghani F
    ACS Nano; 2013 Oct; 7(10):8469-83. PubMed ID: 24001050
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Processing and bioactivity of 45S5 Bioglass(®)-graphene nanoplatelets composites.
    Porwal H; Grasso S; Cordero-Arias L; Li C; Boccaccini AR; Reece MJ
    J Mater Sci Mater Med; 2014 Jun; 25(6):1403-13. PubMed ID: 24519757
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In vitro studies of annulus fibrosus disc cell attachment, differentiation and matrix production on PDLLA/45S5 Bioglass composite films.
    Wilda H; Gough JE
    Biomaterials; 2006 Oct; 27(30):5220-9. PubMed ID: 16814857
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro.
    Kim SS; Park MS; Gwak SJ; Choi CY; Kim BS
    Tissue Eng; 2006 Oct; 12(10):2997-3006. PubMed ID: 17506618
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites.
    Misra SK; Mohn D; Brunner TJ; Stark WJ; Philip SE; Roy I; Salih V; Knowles JC; Boccaccini AR
    Biomaterials; 2008 Apr; 29(12):1750-61. PubMed ID: 18255139
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass.
    Li H; Du R; Chang J
    J Biomater Appl; 2005 Oct; 20(2):137-55. PubMed ID: 16183674
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity.
    Kim SS; Ahn KM; Park MS; Lee JH; Choi CY; Kim BS
    J Biomed Mater Res A; 2007 Jan; 80(1):206-15. PubMed ID: 17072849
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Preparation of poly(epsilon-caprolactone)/continuous bioglass fibre composite using monomer transfer moulding for bone implant.
    Jiang G; Evans ME; Jones IA; Rudd CD; Scotchford CA; Walker GS
    Biomaterials; 2005 May; 26(15):2281-8. PubMed ID: 15585230
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Composite bone substitute materials based on beta-tricalcium phosphate and magnesium-containing sol-gel derived bioactive glass.
    Hesaraki S; Safari M; Shokrgozar MA
    J Mater Sci Mater Med; 2009 Oct; 20(10):2011-7. PubMed ID: 19466530
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Degradation properties of co-continuous calcium-phosphate-polyester composites.
    Ehrenfried LM; Farrar D; Cameron RE
    Biomacromolecules; 2009 Jul; 10(7):1976-85. PubMed ID: 21197963
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices.
    Vergnol G; Ginsac N; Rivory P; Meille S; Chenal JM; Balvay S; Chevalier J; Hartmann DJ
    J Biomed Mater Res B Appl Biomater; 2016 Jan; 104(1):180-91. PubMed ID: 25677798
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Processing and sustained in vitro release of rifampicin containing composites to enhance the treatment of osteomyelitis.
    Ahola N; Veiranto M; Männistö N; Karp M; Rich J; Efimov A; Seppälä J; Kellomäki M
    Biomatter; 2012; 2(4):213-25. PubMed ID: 23507887
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In vitro degradation behavior and bioactivity of magnesium-Bioglass(®) composites for orthopedic applications.
    Huan Z; Leeflang S; Zhou J; Zhai W; Chang J; Duszczyk J
    J Biomed Mater Res B Appl Biomater; 2012 Feb; 100(2):437-46. PubMed ID: 22121143
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part II: In vitro degradation.
    Niemelä T; Niiranen H; Kellomäki M
    Acta Biomater; 2008 Jan; 4(1):156-64. PubMed ID: 17692583
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Composites made of rapidly resorbable ceramics and poly(lactide) show adequate mechanical properties for use as bone substitute materials.
    Ignatius AA; Wolf S; Augat P; Claes LE
    J Biomed Mater Res; 2001 Oct; 57(1):126-31. PubMed ID: 11416859
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of Sterilization and Hydrolytic Degradation on the Structure, Morphology and Compressive Strength of Polylactide-Hydroxyapatite Composites.
    Kasprzak M; Szabłowska A; Kurzyk A; Tymowicz-Grzyb P; Najmrodzki A; Woźniak A; Antosik A; Pagacz J; Szterner P; Plichta A; Wieciński P; Rusek-Wala P; Krupa A; Płociński P; Rudnicka K; Biernat M
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142380
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation.
    Schugens C; Maquet V; Grandfils C; Jerome R; Teyssie P
    J Biomed Mater Res; 1996 Apr; 30(4):449-61. PubMed ID: 8847353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.