These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12889200)

  • 1. [Evolutionary aspects of compensation of functions of the damaged spinal cord].
    Matinian LA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2003; 53(3):279-89. PubMed ID: 12889200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary aspects of the compensation for the functions of the damaged spinal cord.
    Matinyan LA
    Neurosci Behav Physiol; 2004 Jul; 34(6):525-33. PubMed ID: 15368896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in CNS structures after spinal cord lesions implications for BMI.
    Martinez M; Rossignol S
    Prog Brain Res; 2011; 194():191-202. PubMed ID: 21867804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity in the injured spinal cord: can we use it to advantage to reestablish effective bladder voiding and continence?
    Zinck ND; Downie JW
    Prog Brain Res; 2006; 152():147-62. PubMed ID: 16198699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastic responses to spinal cord injury.
    Raineteau O
    Behav Brain Res; 2008 Sep; 192(1):114-23. PubMed ID: 18372052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurochemical plasticity and the role of neurotrophic factors in bladder reflex pathways after spinal cord injury.
    Vizzard MA
    Prog Brain Res; 2006; 152():97-115. PubMed ID: 16198696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary restriction started after spinal cord injury improves functional recovery.
    Plunet WT; Streijger F; Lam CK; Lee JH; Liu J; Tetzlaff W
    Exp Neurol; 2008 Sep; 213(1):28-35. PubMed ID: 18585708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats.
    Lesage F; Brieu N; Dubeau S; Beaumont E
    Neurosci Lett; 2009 Apr; 454(1):105-9. PubMed ID: 19429064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal cord plasticity in acquisition and maintenance of motor skills.
    Wolpaw JR
    Acta Physiol (Oxf); 2007 Feb; 189(2):155-69. PubMed ID: 17250566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic plasticity modulates the spontaneous recovery of locomotion after spinal cord hemisection.
    Gulino R; Dimartino M; Casabona A; Lombardo SA; Perciavalle V
    Neurosci Res; 2007 Jan; 57(1):148-56. PubMed ID: 17083989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord injury and plasticity: opportunities and challenges.
    Fouad K; Krajacic A; Tetzlaff W
    Brain Res Bull; 2011 Mar; 84(4-5):337-42. PubMed ID: 20471456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats.
    Kanagal SG; Muir GD
    Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic and endocrine changes in spinal cord injury: I. The nervous system before and after transection of the spinal cord.
    Claus-Walker J; Halstead LS
    Arch Phys Med Rehabil; 1981 Dec; 62(12):595-601. PubMed ID: 7316719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal cord injury: there is nothing permanent except change (Heraclitus, 540-480 BC).
    Nistri A; Saccavini M
    Brain Res Bull; 2009 Jan; 78(1):2-3. PubMed ID: 18929626
    [No Abstract]   [Full Text] [Related]  

  • 15. Promoting anatomical plasticity and recovery of function after traumatic injury to the central or peripheral nervous system.
    Priestley JV
    Brain; 2007 Apr; 130(Pt 4):895-7. PubMed ID: 17438015
    [No Abstract]   [Full Text] [Related]  

  • 16. Plasticity in sublesionally located neurons following spinal cord injury.
    Lapointe NP; Ung RV; Guertin PA
    J Neurophysiol; 2007 Nov; 98(5):2497-500. PubMed ID: 17881483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of reactive astrocytes containing S100beta protein and fibroblast growth factor-2 in the border and in the adjacent preserved tissue after a contusion injury of the spinal cord in rats: implications for wound repair and neuroregeneration.
    do Carmo Cunha J; de Freitas Azevedo Levy B; de Luca BA; de Andrade MS; Gomide VC; Chadi G
    Wound Repair Regen; 2007; 15(1):134-46. PubMed ID: 17244329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of descending axon tracts after spinal cord injury.
    Deumens R; Koopmans GC; Joosten EA
    Prog Neurobiol; 2005; 77(1-2):57-89. PubMed ID: 16271433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NG2 proteoglycan expression in the peripheral nervous system: upregulation following injury and comparison with CNS lesions.
    Rezajooi K; Pavlides M; Winterbottom J; Stallcup WB; Hamlyn PJ; Lieberman AR; Anderson PN
    Mol Cell Neurosci; 2004 Apr; 25(4):572-84. PubMed ID: 15080887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Neurotrophin 3 in spinal neuroplasticity in rats subjected to cord transection.
    Yang HJ; Yang XY; Ba YC; Pang JX; Meng BL; Lin N; Li LY; Dong XY; Zhao Y; Tian CF; Wang TH
    Growth Factors; 2009 Aug; 27(4):237-46. PubMed ID: 19513915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.