BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12889610)

  • 1. Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcóllar (Spain).
    Clemente R; Walker DJ; Roig A; Bernal MP
    Biodegradation; 2003 Jun; 14(3):199-205. PubMed ID: 12889610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): the effect of soil amendments.
    Clemente R; Walker DJ; Bernal MP
    Environ Pollut; 2005 Nov; 138(1):46-58. PubMed ID: 15894412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste.
    Walker DJ; Clemente R; Bernal MP
    Chemosphere; 2004 Oct; 57(3):215-24. PubMed ID: 15312738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste.
    Clemente R; Almela C; Bernal MP
    Environ Pollut; 2006 Oct; 143(3):397-406. PubMed ID: 16472894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
    Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H
    J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chelate-assisted phytoextraction of heavy metals in a soil contaminated with a pyritic sludge.
    Peñalosa JM; Carpena RO; Vázquez S; Agha R; Granado A; Sarro MJ; Esteban E
    Sci Total Environ; 2007 May; 378(1-2):199-204. PubMed ID: 17328942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic amendments impact the availability of heavy metal(loid)s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor.
    Nawab J; Khan S; Aamir M; Shamshad I; Qamar Z; Din I; Huang Q
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2381-90. PubMed ID: 26411451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials.
    Clemente R; Escolar A; Bernal MP
    Bioresour Technol; 2006 Oct; 97(15):1894-901. PubMed ID: 16223584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Speciation and bioavailability of heavy metals in paddy soil irrigated by acid mine drainage].
    Xu C; Xia BC; Wu HN; Lin XF; Qiu RL
    Huan Jing Ke Xue; 2009 Mar; 30(3):900-6. PubMed ID: 19432348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure.
    Meng J; Tao M; Wang L; Liu X; Xu J
    Sci Total Environ; 2018 Aug; 633():300-307. PubMed ID: 29574374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of compost and technosol amendments on metal concentrations in a mine soil planted with Brassica juncea L.
    Forján R; Rodríguez-Vila A; Cerqueira B; Covelo EF
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19713-19727. PubMed ID: 29736648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural attenuation of residual heavy metal contamination in soils affected by the Aznalcóllar mine spill, SW Spain.
    Vázquez S; Hevia A; Moreno E; Esteban E; Peñalosa JM; Carpena RO
    J Environ Manage; 2011 Aug; 92(8):2069-75. PubMed ID: 21531070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils.
    Walker DJ; Clemente R; Roig A; Bernal MP
    Environ Pollut; 2003; 122(2):303-12. PubMed ID: 12531318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil.
    Tang X; Li X; Liu X; Hashmi MZ; Xu J; Brookes PC
    Chemosphere; 2015 Jan; 119():177-183. PubMed ID: 24992219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovering a copper mine soil using organic amendments and phytomanagement with Brassica juncea L.
    Rodríguez-Vila A; Covelo EF; Forján R; Asensio V
    J Environ Manage; 2015 Jan; 147():73-80. PubMed ID: 25262389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using compost and technosol combined with biochar and Brassica juncea L. to decrease the bioavailable metal concentration in soil from a copper mine settling pond.
    Forján R; Rodríguez-Vila A; Covelo EF
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1294-1305. PubMed ID: 29086173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth.
    Simon L
    Environ Geochem Health; 2005 Dec; 27(4):289-300. PubMed ID: 16027964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.