These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12889817)

  • 1. Enhancement of the catalytic activity of an artificial phosphotriesterase using a molecular imprinting technique.
    Meng Z; Yamazaki T; Sode K
    Biotechnol Lett; 2003 Jul; 25(13):1075-80. PubMed ID: 12889817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a molecular imprinting catalyst using target analogue template and its application for an amperometric fructosylamine sensor.
    Sode K; Ohta S; Yanai Y; Yamazaki T
    Biosens Bioelectron; 2003 Oct; 18(12):1485-90. PubMed ID: 12941564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual-template imprinted capsule with remarkably enhanced catalytic activity for pesticide degradation and elimination simultaneously.
    Guo Y; Guo T
    Chem Commun (Camb); 2013 Feb; 49(11):1073-5. PubMed ID: 23264959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow injection amperometric detection of OP nerve agents based on an organophosphorus-hydrolase biosensor detector.
    Wang J; Krause R; Block K; Musameh M; Mulchandani A; Schöning MJ
    Biosens Bioelectron; 2003 Mar; 18(2-3):255-60. PubMed ID: 12485772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of parathion imprinted polymer beads and its applications in electrochemical sensing.
    Li C; Zhan G; Ma M; Wang Z
    Colloids Surf B Biointerfaces; 2012 Feb; 90():152-8. PubMed ID: 22056252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detoxification of organophosphate pesticides using a nylon based immobilized phosphotriesterase from Pseudomonas diminuta.
    Caldwell SR; Raushel FM
    Appl Biochem Biotechnol; 1991 Oct; 31(1):59-73. PubMed ID: 1665681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sonochemically fabricated enzyme microelectrode arrays for the environmental monitoring of pesticides.
    Pritchard J; Law K; Vakurov A; Millner P; Higson SP
    Biosens Bioelectron; 2004 Nov; 20(4):765-72. PubMed ID: 15522591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophosphorous nerve agents with p-nitrophenyl substituent.
    Lei Y; Mulchandani P; Chen W; Wang J; Mulchandani A
    Biotechnol Bioeng; 2004 Mar; 85(7):706-13. PubMed ID: 14991648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic degradation of organophosphorous nerve agent simulants by polymer beads@graphene oxide with organophosphorus hydrolase-like activity based on rational design of functional bimetallic nuclear ligand.
    Ma X; Zhang L; Xia M; Zhang X; Zhang Y
    J Hazard Mater; 2018 Aug; 355():65-73. PubMed ID: 29775879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of pesticides using an amperometric biosensor based on ferophthalocyanine chemically modified carbon paste electrode and immobilized bienzymatic system.
    Ciucu AA; Negulescu C; Baldwin RP
    Biosens Bioelectron; 2003 Mar; 18(2-3):303-10. PubMed ID: 12485777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zn2+-catalyzed methanolysis of phosphate triesters: a process for catalytic degradation of the organophosphorus pesticides paraoxon and fenitrothion.
    Desloges W; Neverov AA; Brown RS
    Inorg Chem; 2004 Oct; 43(21):6752-61. PubMed ID: 15476375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselectivity of phosphotriesterase with paraoxon derivatives: a computational study.
    Zhan D; Guan S; Jin H; Han W; Wang S
    J Biomol Struct Dyn; 2016; 34(3):600-11. PubMed ID: 25929154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding How Nanoparticle Attachment Enhances Phosphotriesterase Kinetic Efficiency.
    Breger JC; Ancona MG; Walper SA; Oh E; Susumu K; Stewart MH; Deschamps JR; Medintz IL
    ACS Nano; 2015 Aug; 9(8):8491-503. PubMed ID: 26230391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase.
    Aubert SD; Li Y; Raushel FM
    Biochemistry; 2004 May; 43(19):5707-15. PubMed ID: 15134445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new composite of graphene and molecularly imprinted polymer based on ionic liquids as functional monomer and cross-linker for electrochemical sensing 6-benzylaminopurine.
    Zhu X; Zeng Y; Zhang Z; Yang Y; Zhai Y; Wang H; Liu L; Hu J; Li L
    Biosens Bioelectron; 2018 Jun; 108():38-45. PubMed ID: 29499557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of phosphotriesters: a theoretical analysis of the enzymatic and solution mechanisms.
    López-Canut V; Ruiz-Pernía JJ; Castillo R; Moliner V; Tuñón I
    Chemistry; 2012 Jul; 18(31):9612-21. PubMed ID: 22745111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues.
    Chen-Goodspeed M; Sogorb MA; Wu F; Raushel FM
    Biochemistry; 2001 Feb; 40(5):1332-9. PubMed ID: 11170460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4-nitrophenol surface molecularly imprinted polymers based on multiwalled carbon nanotubes for the elimination of paraoxon pollution.
    Chi W; Shi H; Shi W; Guo Y; Guo T
    J Hazard Mater; 2012 Aug; 227-228():243-9. PubMed ID: 22652321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitors directed towards the binuclear metal center of phosphotriesterase.
    Hong SB; Raushel FM
    J Enzyme Inhib; 1997 Aug; 12(3):191-203. PubMed ID: 9314115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecularly imprinted polymer on indium tin oxide and silicon.
    Kindschy LM; Alocilja EC
    Biosens Bioelectron; 2005 Apr; 20(10):2163-7. PubMed ID: 15741092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.