These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 12889961)
1. A combined experimental and theoretical study of divalent metal ion selectivity and function in proteins: application to E. coli ribonuclease H1. Babu CS; Dudev T; Casareno R; Cowan JA; Lim C J Am Chem Soc; 2003 Aug; 125(31):9318-28. PubMed ID: 12889961 [TBL] [Abstract][Full Text] [Related]
2. Metal ion binding and enzymatic mechanism of Methanococcus jannaschii RNase HII. Lai B; Li Y; Cao A; Lai L Biochemistry; 2003 Jan; 42(3):785-91. PubMed ID: 12534291 [TBL] [Abstract][Full Text] [Related]
3. Differential role of the protein matrix on the binding of a catalytic aspartate to Mg2+ vs Ca2+: application to ribonuclease H. Babu CS; Dudev T; Lim C J Am Chem Soc; 2013 May; 135(17):6541-8. PubMed ID: 23577985 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulation of E. coli ribonuclease H1 in solution: correlation with NMR and X-ray data and insights into biological function. Philippopoulos M; Lim C J Mol Biol; 1995 Dec; 254(4):771-92. PubMed ID: 7500349 [TBL] [Abstract][Full Text] [Related]
5. Identification of single Mn(2+) binding sites required for activation of the mutant proteins of E.coli RNase HI at Glu48 and/or Asp134 by X-ray crystallography. Tsunaka Y; Takano K; Matsumura H; Yamagata Y; Kanaya S J Mol Biol; 2005 Feb; 345(5):1171-83. PubMed ID: 15644213 [TBL] [Abstract][Full Text] [Related]
6. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations. Dudev T; Lin YL; Dudev M; Lim C J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685 [TBL] [Abstract][Full Text] [Related]
7. Crystallographic identification of metal-binding sites in Escherichia coli inorganic pyrophosphatase. Kankare J; Salminen T; Lahti R; Cooperman BS; Baykov AA; Goldman A Biochemistry; 1996 Apr; 35(15):4670-7. PubMed ID: 8664256 [TBL] [Abstract][Full Text] [Related]
8. Catalytic roles of divalent metal ions in phosphoryl transfer by EcoRV endonuclease. Sam MD; Perona JJ Biochemistry; 1999 May; 38(20):6576-86. PubMed ID: 10350476 [TBL] [Abstract][Full Text] [Related]
9. Hydration structure and free energy of biomolecularly specific aqueous dications, including Zn2+ and first transition row metals. Asthagiri D; Pratt LR; Paulaitis ME; Rempe SB J Am Chem Soc; 2004 Feb; 126(4):1285-9. PubMed ID: 14746502 [TBL] [Abstract][Full Text] [Related]
10. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Stec B; Holtz KM; Kantrowitz ER J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454 [TBL] [Abstract][Full Text] [Related]
11. Protein/solvent medium effects on Mg(2+)-carboxylate interactions in metalloenzymes. Babu CS; Lim C J Am Chem Soc; 2010 May; 132(18):6290-1. PubMed ID: 20397692 [TBL] [Abstract][Full Text] [Related]
12. Interaction of different metal ions with carboxylic acid group: a quantitative study. Bala T; Prasad BL; Sastry M; Kahaly MU; Waghmare UV J Phys Chem A; 2007 Jul; 111(28):6183-90. PubMed ID: 17585841 [TBL] [Abstract][Full Text] [Related]
13. Empirical force fields for biologically active divalent metal cations in water. Babu CS; Lim C J Phys Chem A; 2006 Jan; 110(2):691-9. PubMed ID: 16405342 [TBL] [Abstract][Full Text] [Related]
14. Computational study of the binding affinity and selectivity of the bacterial ammonium transporter AmtB. Luzhkov VB; Almlöf M; Nervall M; Aqvist J Biochemistry; 2006 Sep; 45(36):10807-14. PubMed ID: 16953566 [TBL] [Abstract][Full Text] [Related]
16. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid. Sullivan SM; Holyoak T Biochemistry; 2007 Sep; 46(35):10078-88. PubMed ID: 17685635 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive study on the solvation of mono- and divalent metal cations: Li+, Na+, K+, Be2+, Mg2+ and Ca2+. Rao JS; Dinadayalane TC; Leszczynski J; Sastry GN J Phys Chem A; 2008 Dec; 112(50):12944-53. PubMed ID: 18834092 [TBL] [Abstract][Full Text] [Related]
18. pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis. MacKerell AD; Sommer MS; Karplus M J Mol Biol; 1995 Apr; 247(4):774-807. PubMed ID: 7723031 [TBL] [Abstract][Full Text] [Related]
19. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Wang J; Stieglitz KA; Kantrowitz ER Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627 [TBL] [Abstract][Full Text] [Related]
20. Computational study of IAG-nucleoside hydrolase: determination of the preferred ground state conformation and the role of active site residues. Mazumder-Shivakumar D; Bruice TC Biochemistry; 2005 May; 44(21):7805-17. PubMed ID: 15909995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]