BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 12890024)

  • 1. Prion protein gene polymorphisms in Saccharomyces cerevisiae.
    Resende CG; Outeiro TF; Sands L; Lindquist S; Tuite MF
    Mol Microbiol; 2003 Aug; 49(4):1005-17. PubMed ID: 12890024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Candida albicans Sup35p protein (CaSup35p): function, prion-like behaviour and an associated polyglutamine length polymorphism.
    Resende C; Parham SN; Tinsley C; Ferreira P; Duarte JAB; Tuite MF
    Microbiology (Reading); 2002 Apr; 148(Pt 4):1049-1060. PubMed ID: 11932450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein.
    Chernoff YO; Galkin AP; Lewitin E; Chernova TA; Newnam GP; Belenkiy SM
    Mol Microbiol; 2000 Feb; 35(4):865-76. PubMed ID: 10692163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Rnq1 protein protects [PSI^(+)] prion from effect of the PNM mutation].
    Bondarev SA; Likholetova DV; Belousov MV; Zhouravleva GA
    Mol Biol (Mosk); 2017; 51(2):367-371. PubMed ID: 28537243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selfish prion of Rnq1 mutant in yeast.
    Kurahashi H; Shibata S; Ishiwata M; Nakamura Y
    Genes Cells; 2009 May; 14(5):659-68. PubMed ID: 19371377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A regulatory role of the Rnq1 nonprion domain for prion propagation and polyglutamine aggregates.
    Kurahashi H; Ishiwata M; Shibata S; Nakamura Y
    Mol Cell Biol; 2008 May; 28(10):3313-23. PubMed ID: 18332119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased [PSI+] appearance by fusion of Rnq1 with the prion domain of Sup35 in Saccharomyces cerevisiae.
    Choe YJ; Ryu Y; Kim HJ; Seok YJ
    Eukaryot Cell; 2009 Jul; 8(7):968-76. PubMed ID: 19411620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of prion-destabilizing mutations in the N-terminal non-prion domain of Rnq1 in Saccharomyces cerevisiae.
    Shibata S; Kurahashi H; Nakamura Y
    Prion; 2009; 3(4):250-8. PubMed ID: 20009538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [PHI+], a novel Sup35-prion variant propagated with non-Gln/Asn oligopeptide repeats in the absence of the chaperone protein Hsp104.
    Crist CG; Nakayashiki T; Kurahashi H; Nakamura Y
    Genes Cells; 2003 Jul; 8(7):603-18. PubMed ID: 12839621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Modification of [PSI+] prion properties by the combination of amino acid changes within Sup35 protein N-domain].
    Bondarev SA; Shirokolobova ED; Trubitsyna NP; Zhuravleva GA
    Mol Biol (Mosk); 2014; 48(2):314-21. PubMed ID: 25850301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of budding yeast prion-determinant sequences across diverse fungi.
    Harrison LB; Yu Z; Stajich JE; Dietrich FS; Harrison PM
    J Mol Biol; 2007 Apr; 368(1):273-82. PubMed ID: 17320905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rnq1: an epigenetic modifier of protein function in yeast.
    Sondheimer N; Lindquist S
    Mol Cell; 2000 Jan; 5(1):163-72. PubMed ID: 10678178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [PSI(+)] aggregate enlargement in rnq1 nonprion domain mutants, leading to a loss of prion in yeast.
    Kurahashi H; Pack CG; Shibata S; Oishi K; Sako Y; Nakamura Y
    Genes Cells; 2011 May; 16(5):576-89. PubMed ID: 21453425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants.
    Shkundina IS; Kushnirov VV; Tuite MF; Ter-Avanesyan MD
    Genetics; 2006 Feb; 172(2):827-35. PubMed ID: 16272413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C-terminal truncation of the Sup35 protein increases the frequency of de novo generation of a prion-based [PSI+] determinant in Saccharomyces cerevisiae.
    Kochneva-Pervukhova NV; Poznyakovski AI; Smirnov VN; Ter-Avanesyan MD
    Curr Genet; 1998 Aug; 34(2):146-51. PubMed ID: 9724418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast.
    Ganusova EE; Ozolins LN; Bhagat S; Newnam GP; Wegrzyn RD; Sherman MY; Chernoff YO
    Mol Cell Biol; 2006 Jan; 26(2):617-29. PubMed ID: 16382152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain-specific sequences required for yeast [PSI+] prion propagation.
    Chang HY; Lin JY; Lee HC; Wang HL; King CY
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13345-50. PubMed ID: 18757753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast prion protein New1 can break Sup35 amyloid fibrils into fragments in an ATP-dependent manner.
    Inoue Y; Kawai-Noma S; Koike-Takeshita A; Taguchi H; Yoshida M
    Genes Cells; 2011 May; 16(5):545-56. PubMed ID: 21453424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular population genetics and evolution of a prion-like protein in Saccharomyces cerevisiae.
    Jensen MA; True HL; Chernoff YO; Lindquist S
    Genetics; 2001 Oct; 159(2):527-35. PubMed ID: 11606530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.