BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12890185)

  • 21. Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Studies using 31P n.m.r. and ruthenium red.
    Unitt JF; McCormack JG; Reid D; MacLachlan LK; England PJ
    Biochem J; 1989 Aug; 262(1):293-301. PubMed ID: 2479373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of oxidative metabolism in volume-overloaded rat hearts: effects of different lipid substrates.
    Ben Cheikh R; Guendouz A; Moravec J
    Am J Physiol; 1994 May; 266(5 Pt 2):H2090-7. PubMed ID: 8203607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts.
    Wan B; Doumen C; Duszynski J; Salama G; Vary TC; LaNoue KF
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H453-60. PubMed ID: 8368348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disturbance of the myocardial energy metabolism in dilated cardiomyopathy due to autoimmunological mechanisms.
    Schultheiss HP
    Circulation; 1993 May; 87(5 Suppl):IV43-8. PubMed ID: 8485833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is there the creatine kinase equilibrium in working heart cells?
    Saks VA; Aliev MK
    Biochem Biophys Res Commun; 1996 Oct; 227(2):360-7. PubMed ID: 8878521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subcellular distribution of energy metabolites in the pre-ischaemic and post-ischaemic perfused working rat heart.
    Humphrey SM; Buckman JE; Holliss DG
    Eur J Biochem; 1990 Aug; 191(3):755-9. PubMed ID: 2143988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 31P magnetic resonance spectroscopy of the Sherpa heart: a phosphocreatine/adenosine triphosphate signature of metabolic defense against hypobaric hypoxia.
    Hochachka PW; Clark CM; Holden JE; Stanley C; Ugurbil K; Menon RS
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1215-20. PubMed ID: 8577743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Interconnection of parameters of the mitochondrial and myofibrillar apparatus of cardiomyocytes and ploidy and hypertrophy in certain mammalian species, differing in body mass].
    Kudriavtsev BN; Anatskaia OV; Nilova VK; Komarov SA
    Tsitologiia; 1997; 39(10):946-64. PubMed ID: 9505342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase in catecholamine-stimulated guinea-pig cardiac muscle. Comparison with mass-action ratio of creatine kinase.
    Bünger R; Mukohara N; Kang YH; Mallet RT
    Eur J Biochem; 1991 Dec; 202(3):913-21. PubMed ID: 1765102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of graded perfusion and isovolumic work on epicardial and venous adenosine and cytosolic metabolism.
    Headrick JP; Matherne GP; Berr SS; Berne RM
    J Mol Cell Cardiol; 1991 Mar; 23(3):309-24. PubMed ID: 1880815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial ATPase and high-energy phosphates in failing hearts.
    Liu J; Wang C; Murakami Y; Gong G; Ishibashi Y; Prody C; Ochiai K; Bache RJ; Godinot C; Zhang J
    Am J Physiol Heart Circ Physiol; 2001 Sep; 281(3):H1319-26. PubMed ID: 11514303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of mitochondrial respiration in the heart in vivo.
    Balaban RS; Heineman FW
    Mol Cell Biochem; 1989 Sep; 89(2):191-7. PubMed ID: 2811864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relation between the O2 supply:demand ratio, MVO2, and adenosine formation in hearts stimulated with inotropic agents.
    Headrick JP; Willis RJ
    Can J Physiol Pharmacol; 1990 Jan; 68(1):110-8. PubMed ID: 2158384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myocardial bioenergetics during acute hibernation.
    Zhang J; Ishibashi Y; Zhang Y; Eijgelshoven MH; Duncker DJ; Merkle H; Bache RJ; Ugurbil K; From AH
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1452-63. PubMed ID: 9321837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate dependence of metabolic state and coronary flow in perfused rat heart.
    Starnes JW; Wilson DF; Erecińska M
    Am J Physiol; 1985 Oct; 249(4 Pt 2):H799-806. PubMed ID: 4051017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relation among regional O2 consumption, high-energy phosphates, and substrate uptake in porcine right ventricle.
    Schwartz GG; Greyson CR; Wisneski JA; Garcia J; Steinman S
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H521-30. PubMed ID: 8141353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration.
    Gout E; Rébeillé F; Douce R; Bligny R
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):E4560-7. PubMed ID: 25313036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adenosine formation and energy metabolism: a 31P-NMR study in isolated rat heart.
    Headrick JP; Willis RJ
    Am J Physiol; 1990 Mar; 258(3 Pt 2):H617-24. PubMed ID: 2316676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.