These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 12890471)

  • 21. Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin.
    Polevoda B; Cardillo TS; Doyle TC; Bedi GS; Sherman F
    J Biol Chem; 2003 Aug; 278(33):30686-97. PubMed ID: 12783868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans.
    Arnesen T; Van Damme P; Polevoda B; Helsens K; Evjenth R; Colaert N; Varhaug JE; Vandekerckhove J; Lillehaug JR; Sherman F; Gevaert K
    Proc Natl Acad Sci U S A; 2009 May; 106(20):8157-62. PubMed ID: 19420222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and characterization of the human ARD1-NATH protein acetyltransferase complex.
    Arnesen T; Anderson D; Baldersheim C; Lanotte M; Varhaug JE; Lillehaug JR
    Biochem J; 2005 Mar; 386(Pt 3):433-43. PubMed ID: 15496142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microscopy-based Saccharomyces cerevisiae complementation model reveals functional conservation and redundancy of N-terminal acetyltransferases.
    Osberg C; Aksnes H; Ninzima S; Marie M; Arnesen T
    Sci Rep; 2016 Aug; 6():31627. PubMed ID: 27555049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases.
    Van Damme P; Hole K; Gevaert K; Arnesen T
    Proteomics; 2015 Jul; 15(14):2436-46. PubMed ID: 25886145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arylamine N-acetyltransferase responsible for acetylation of 2-aminophenols in Streptomyces griseus.
    Suzuki H; Ohnishi Y; Horinouchi S
    J Bacteriol; 2007 Mar; 189(5):2155-9. PubMed ID: 17158669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms.
    Rathore OS; Faustino A; Prudêncio P; Van Damme P; Cox CJ; Martinho RG
    Sci Rep; 2016 Feb; 6():21304. PubMed ID: 26861501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. N
    Friedrich UA; Zedan M; Hessling B; Fenzl K; Gillet L; Barry J; Knop M; Kramer G; Bukau B
    Cell Rep; 2021 Feb; 34(5):108711. PubMed ID: 33535049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning and molecular characterization of three arylamine N-acetyltransferase genes from Bacillus anthracis: identification of unusual enzymatic properties and their contribution to sulfamethoxazole resistance.
    Pluvinage B; Dairou J; Possot OM; Martins M; Fouet A; Dupret JM; Rodrigues-Lima F
    Biochemistry; 2007 Jun; 46(23):7069-78. PubMed ID: 17511472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization.
    Starheim KK; Gromyko D; Evjenth R; Ryningen A; Varhaug JE; Lillehaug JR; Arnesen T
    Mol Cell Biol; 2009 Jul; 29(13):3569-81. PubMed ID: 19398576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into how protein dynamics affects arylamine N-acetyltransferase catalysis.
    Zhang N; Walters KJ
    Biochem Biophys Res Commun; 2009 Jul; 385(3):395-401. PubMed ID: 19463782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NMR-based model reveals the structural determinants of mammalian arylamine N-acetyltransferase substrate specificity.
    Zhang N; Liu L; Liu F; Wagner CR; Hanna PE; Walters KJ
    J Mol Biol; 2006 Oct; 363(1):188-200. PubMed ID: 16959263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular basis for N-terminal acetylation by the heterodimeric NatA complex.
    Liszczak G; Goldberg JM; Foyn H; Petersson EJ; Arnesen T; Marmorstein R
    Nat Struct Mol Biol; 2013 Sep; 20(9):1098-105. PubMed ID: 23912279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines.
    Sandy J; Mushtaq A; Holton SJ; Schartau P; Noble ME; Sim E
    Biochem J; 2005 Aug; 390(Pt 1):115-23. PubMed ID: 15869465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structures of human arylamine N-acetyltransferases.
    Grant DM
    Curr Drug Metab; 2008 Jul; 9(6):465-70. PubMed ID: 18680466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Eubacterial arylamine N-acetyltransferases - identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartate residues.
    Payton M; Mushtaq A; Yu TW; Wu LJ; Sinclair J; Sim E
    Microbiology (Reading); 2001 May; 147(Pt 5):1137-1147. PubMed ID: 11320117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purification and biochemical characterization of hepatic arylamine N-acetyltransferase from rapid and slow acetylator mice: identity with arylhydroxamic acid N,O-acyltransferase and N-hydroxyarylamine O-acetyltransferase.
    Mattano SS; Land S; King CM; Weber WW
    Mol Pharmacol; 1989 May; 35(5):599-609. PubMed ID: 2725469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural determinants and cellular environment define processed actin as the sole substrate of the N-terminal acetyltransferase NAA80.
    Goris M; Magin RS; Foyn H; Myklebust LM; Varland S; Ree R; Drazic A; Bhambra P; Støve SI; Baumann M; Haug BE; Marmorstein R; Arnesen T
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4405-4410. PubMed ID: 29581307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Bacillus anthracis arylamine N-acetyltransferase ((BACAN)NAT1) that inactivates sulfamethoxazole, reveals unusual structural features compared with the other NAT isoenzymes.
    Pluvinage B; Li de la Sierra-Gallay I; Kubiak X; Xu X; Dairou J; Dupret JM; Rodrigues-Lima F
    FEBS Lett; 2011 Dec; 585(24):3947-52. PubMed ID: 22062153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The stress-induced Tfs1p requires NatB-mediated acetylation to inhibit carboxypeptidase Y and to regulate the protein kinase A pathway.
    Caesar R; Blomberg A
    J Biol Chem; 2004 Sep; 279(37):38532-43. PubMed ID: 15229224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.