BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 12890506)

  • 1. Inhibitory cotransmission or after-hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission.
    Thomas EA; Bornstein JC
    Neuroscience; 2003; 120(2):333-51. PubMed ID: 12890506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computer simulation of recurrent, excitatory networks of sensory neurons of the gut in guinea-pig.
    Thomas EA; Bertrand PP; Bornstein JC
    Neurosci Lett; 2000 Jun; 287(2):137-40. PubMed ID: 10854731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genesis and role of coordinated firing in a feedforward network: a model study of the enteric nervous system.
    Thomas EA; Bertrand PP; Bornstein JC
    Neuroscience; 1999; 93(4):1525-37. PubMed ID: 10501477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Group II and group III metabotropic glutamate receptor agonists depress synaptic transmission in the rat spinal cord dorsal horn.
    Gerber G; Zhong J; Youn D; Randic M
    Neuroscience; 2000; 100(2):393-406. PubMed ID: 11008177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of corticothalamic feedback on the output dynamics of a thalamocortical neurone model: the role of synapse location and metabotropic glutamate receptors.
    Emri Z; Antal K; Crunelli V
    Neuroscience; 2003; 117(1):229-39. PubMed ID: 12605909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow excitatory metabotropic signal transmission in the enteric nervous system.
    Wood JD; Kirchgessner A
    Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():71-80. PubMed ID: 15066009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow feedback inhibition in the CA3 area of the rat hippocampus by synergistic synaptic activation of mGluR1 and mGluR5.
    Mori M; Gerber U
    J Physiol; 2002 Nov; 544(3):793-9. PubMed ID: 12411524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A re-examination of the possibility of controlling the firing rate gain of neurons by balancing excitatory and inhibitory conductances.
    Capaday C
    Exp Brain Res; 2002 Mar; 143(1):67-77. PubMed ID: 11907692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of deterministic and stochastic paired excitatory-inhibitory delayed feedback.
    Laing CR; Longtin A
    Neural Comput; 2003 Dec; 15(12):2779-822. PubMed ID: 14629868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon.
    Nurgali K; Stebbing MJ; Furness JB
    J Comp Neurol; 2004 Jan; 468(1):112-24. PubMed ID: 14648694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All for One But Not One for All: Excitatory Synaptic Scaling and Intrinsic Excitability Are Coregulated by CaMKIV, Whereas Inhibitory Synaptic Scaling Is Under Independent Control.
    Joseph A; Turrigiano GG
    J Neurosci; 2017 Jul; 37(28):6778-6785. PubMed ID: 28592691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.
    Tuckwell HC
    J Physiol Paris; 2006; 100(1-3):88-99. PubMed ID: 17064883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic primary afferent neurons of the intestine.
    Furness JB; Kunze WA; Bertrand PP; Clerc N; Bornstein JC
    Prog Neurobiol; 1998 Jan; 54(1):1-18. PubMed ID: 9460790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of excitatory synaptic transmission in the enteric nervous system.
    Galligan JJ
    Tokai J Exp Clin Med; 1998 Jun; 23(3):129-36. PubMed ID: 9972540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational model of the migrating motor complex of the small intestine.
    Thomas EA; Sjövall H; Bornstein JC
    Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G564-72. PubMed ID: 14630643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon.
    Spencer NJ; Smith TK
    J Physiol; 2004 Jul; 558(Pt 2):577-96. PubMed ID: 15146052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recurrent networks of submucous neurons controlling intestinal secretion: a modeling study.
    Chambers JD; Bornstein JC; Sjövall H; Thomas EA
    Am J Physiol Gastrointest Liver Physiol; 2005 May; 288(5):G887-96. PubMed ID: 15637177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronized firings in the networks of class 1 excitable neurons with excitatory and inhibitory connections and their dependences on the forms of interactions.
    Kanamaru T; Sekine M
    Neural Comput; 2005 Jun; 17(6):1315-38. PubMed ID: 15901400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.