These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12890531)

  • 21. Rational design of 4,5-disubstituted-5,7-dihydro-pyrrolo[2,3-d]pyrimidin-6-ones as a novel class of inhibitors of epidermal growth factor receptor (EGF-R) and Her2(p185(erbB)) tyrosine kinases.
    Sun L; Cui J; Liang C; Zhou Y; Nematalla A; Wang X; Chen H; Tang C; Wei J
    Bioorg Med Chem Lett; 2002 Aug; 12(16):2153-7. PubMed ID: 12127526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dacomitinib, a pan-inhibitor of ErbB receptors, suppresses growth and invasive capacity of chemoresistant ovarian carcinoma cells.
    Momeny M; Zarrinrad G; Moghaddaskho F; Poursheikhani A; Sankanian G; Zaghal A; Mirshahvaladi S; Esmaeili F; Eyvani H; Barghi F; Sabourinejad Z; Alishahi Z; Yousefi H; Ghasemi R; Dardaei L; Bashash D; Chahardouli B; Dehpour AR; Tavakkoly-Bazzaz J; Alimoghaddam K; Ghavamzadeh A; Ghaffari SH
    Sci Rep; 2017 Jun; 7(1):4204. PubMed ID: 28646172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cross-talk between the receptor tyrosine kinases Ron and epidermal growth factor receptor.
    Peace BE; Hill KJ; Degen SJ; Waltz SE
    Exp Cell Res; 2003 Oct; 289(2):317-25. PubMed ID: 14499632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug discovery process for kinase inhibitors.
    Weinmann H; Metternich R
    Chembiochem; 2005 Mar; 6(3):455-9. PubMed ID: 15742380
    [No Abstract]   [Full Text] [Related]  

  • 25. HER2+ Cancer Cell Dependence on PI3K vs. MAPK Signaling Axes Is Determined by Expression of EGFR, ERBB3 and CDKN1B.
    Kirouac DC; Du J; Lahdenranta J; Onsum MD; Nielsen UB; Schoeberl B; McDonagh CF
    PLoS Comput Biol; 2016 Apr; 12(4):e1004827. PubMed ID: 27035903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovery of potent, selective small molecule inhibitors of α-subtype of type III phosphatidylinositol-4-kinase (PI4KIIIα).
    Raubo P; Andrews DM; McKelvie JC; Robb GR; Smith JM; Swarbrick ME; Waring MJ
    Bioorg Med Chem Lett; 2015 Aug; 25(16):3189-93. PubMed ID: 26087940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ErbB Receptors and Cancer.
    Wang Z
    Methods Mol Biol; 2017; 1652():3-35. PubMed ID: 28791631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of EGFR kinase inhibitors: a ligand-based approach and its confirmation with structure-based studies.
    Vema A; Panigrahi SK; Rambabu G; Gopalakrishnan B; Sarma JA; Desiraju GR
    Bioorg Med Chem; 2003 Oct; 11(21):4643-53. PubMed ID: 14527561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Review on EGFR Inhibitors: Critical Updates.
    Singh D; Attri BK; Gill RK; Bariwal J
    Mini Rev Med Chem; 2016; 16(14):1134-66. PubMed ID: 26996617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of Kinase Activity in the Caenorhabditis elegans EGF Receptor, LET-23.
    Liu L; Thaker TM; Freed DM; Frazier N; Malhotra K; Lemmon MA; Jura N
    Structure; 2018 Feb; 26(2):270-281.e4. PubMed ID: 29358026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers.
    Roskoski R
    Pharmacol Res; 2019 Jan; 139():395-411. PubMed ID: 30500458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinomics-structural biology and chemogenomics of kinase inhibitors and targets.
    Vieth M; Higgs RE; Robertson DH; Shapiro M; Gragg EA; Hemmerle H
    Biochim Biophys Acta; 2004 Mar; 1697(1-2):243-57. PubMed ID: 15023365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. G-protein coupled receptor and kinase targets: advances in drug discovery from molecular to clinical.
    Spencer J
    Future Med Chem; 2011 Jul; 3(9):1097-100. PubMed ID: 21806373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics.
    Mitchell RA; Luwor RB; Burgess AW
    Exp Cell Res; 2018 Oct; 371(1):1-19. PubMed ID: 30098332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signal transduction by MAP kinases: regulation by phosphorylation-dependent switches.
    Whitmarsh AJ; Davis RJ
    Sci STKE; 1999 Sep; 1999(1):PE1. PubMed ID: 11865181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Therapeutic modulation of inflammatory gene transcription by kinase inhibitors.
    Alton G; Schwamborn K; Satoh Y; Westwick JK
    Expert Opin Biol Ther; 2002 Aug; 2(6):621-32. PubMed ID: 12171506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The role of different kinase pathways of signal transduction in proliferation of E1A + Ras transformants].
    Abramova MV; Svetlikova SB; Grinkevich VV; Pospelov VA
    Tsitologiia; 2005; 47(12):1071-81. PubMed ID: 16706195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting cancer with small-molecular-weight kinase inhibitors.
    Fabbro D; Cowan-Jacob SW; Möbitz H; Martiny-Baron G
    Methods Mol Biol; 2012; 795():1-34. PubMed ID: 21960212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Periodic Mechanical Stress Activates PKCδ-Dependent EGFR Mitogenic Signals in Rat Chondrocytes via PI3K-Akt and ERK1/2.
    He P; Shen N; Gao G; Jiang X; Sun H; Zhou D; Xu N; Nong L; Ren K
    Cell Physiol Biochem; 2016; 39(4):1281-94. PubMed ID: 27606614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opportunities and challenges for the development of covalent chemical immunomodulators.
    Backus KM; Cao J; Maddox SM
    Bioorg Med Chem; 2019 Aug; 27(15):3421-3439. PubMed ID: 31204229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.