These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 12890609)
21. The Y233 gatekeeper of DmpR modulates effector-responsive transcriptional control of σ Seibt H; Sauer UH; Shingler V Environ Microbiol; 2019 Apr; 21(4):1321-1330. PubMed ID: 30773776 [TBL] [Abstract][Full Text] [Related]
22. Fiber-optic-based biomonitoring of benzene derivatives by recombinant E. coli bearing luciferase gene-fused TOL-plasmid immobilized on the fiber-optic end. Ikariyama Y; Nishiguchi S; Koyama T; Kobatake E; Aizawa M; Tsuda M; Nakazawa T Anal Chem; 1997 Jul; 69(13):2600-5. PubMed ID: 9212714 [TBL] [Abstract][Full Text] [Related]
23. The target for the Pseudomonas putida Crc global regulator in the benzoate degradation pathway is the BenR transcriptional regulator. Moreno R; Rojo F J Bacteriol; 2008 Mar; 190(5):1539-45. PubMed ID: 18156252 [TBL] [Abstract][Full Text] [Related]
24. Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors. Leedjärv A; Ivask A; Virta M; Kahru A Chemosphere; 2006 Sep; 64(11):1910-9. PubMed ID: 16581105 [TBL] [Abstract][Full Text] [Related]
25. Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein. Venturi V; Ottevanger C; Bracke M; Weisbeek P Mol Microbiol; 1995 Mar; 15(6):1081-93. PubMed ID: 7623664 [TBL] [Abstract][Full Text] [Related]
26. Critical nucleotides in the interaction of CatR with the pheBA promoter: conservation of the CatR-mediated regulation mechanisms between the pheBA and catBCA operons. Tover A; Zernant J; Chugani SA; Chakrabarty AM; Kivisaar M Microbiology (Reading); 2000 Jan; 146 ( Pt 1)():173-183. PubMed ID: 10658664 [TBL] [Abstract][Full Text] [Related]
27. HbpR, a new member of the XylR/DmpR subclass within the NtrC family of bacterial transcriptional activators, regulates expression of 2-hydroxybiphenyl metabolism in Pseudomonas azelaica HBP1. Jaspers MC; Suske WA; Schmid A; Goslings DA; Kohler HP; van der Meer JR J Bacteriol; 2000 Jan; 182(2):405-17. PubMed ID: 10629187 [TBL] [Abstract][Full Text] [Related]
28. Expression and regulation of a dnaA homologue isolated from Pseudomonas putida. Ingmer H; Atlung T Mol Gen Genet; 1992 Apr; 232(3):431-9. PubMed ID: 1588913 [TBL] [Abstract][Full Text] [Related]
29. Purification of the LysR family regulator, ClcR, and its interaction with the Pseudomonas putida clcABD chlorocatechol operon promoter. Coco WM; Parsek MR; Chakrabarty AM J Bacteriol; 1994 Sep; 176(17):5530-3. PubMed ID: 8071232 [TBL] [Abstract][Full Text] [Related]
30. Agarose-gel-immobilized recombinant bacterial biosensors for simple and disposable on-site detection of phenolic compounds. Shin HJ Appl Microbiol Biotechnol; 2012 Mar; 93(5):1895-904. PubMed ID: 22089389 [TBL] [Abstract][Full Text] [Related]
31. Growth phase-dependent transcription of the sigma(54)-dependent Po promoter controlling the Pseudomonas-derived (methyl)phenol dmp operon of pVI150. Sze CC; Moore T; Shingler V J Bacteriol; 1996 Jul; 178(13):3727-35. PubMed ID: 8682773 [TBL] [Abstract][Full Text] [Related]
32. Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds. Behzadian F; Barjeste H; Hosseinkhani S; Zarei AR Curr Microbiol; 2011 Feb; 62(2):690-6. PubMed ID: 20872219 [TBL] [Abstract][Full Text] [Related]
33. Paralogous Regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a Basis for Arsenic Biosensor Development. Fernández M; Morel B; Ramos JL; Krell T Appl Environ Microbiol; 2016 Jul; 82(14):4133-4144. PubMed ID: 27208139 [TBL] [Abstract][Full Text] [Related]
34. Transcriptional induction kinetics from the promoters of the catabolic pathways of TOL plasmid pWW0 of Pseudomonas putida for metabolism of aromatics. Marqués S; Holtel A; Timmis KN; Ramos JL J Bacteriol; 1994 May; 176(9):2517-24. PubMed ID: 8169200 [TBL] [Abstract][Full Text] [Related]
35. XylS domain interactions can be deduced from intraallelic dominance in double mutants of Pseudomonas putida. Michán C; Kessler B; de Lorenzo V; Timmis KN; Ramos JL Mol Gen Genet; 1992 Nov; 235(2-3):406-12. PubMed ID: 1465113 [TBL] [Abstract][Full Text] [Related]
36. Transcriptional control of the multiple catabolic pathways encoded on the TOL plasmid pWW53 of Pseudomonas putida MT53. Gallegos MT; Williams PA; Ramos JL J Bacteriol; 1997 Aug; 179(16):5024-9. PubMed ID: 9260942 [TBL] [Abstract][Full Text] [Related]
37. Transcriptional and translational control through the 5'-leader region of the dmpR master regulatory gene of phenol metabolism. Madhushani A; Del Peso-Santos T; Moreno R; Rojo F; Shingler V Environ Microbiol; 2015 Jan; 17(1):119-33. PubMed ID: 24889314 [TBL] [Abstract][Full Text] [Related]
38. Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida. Coco WM; Rothmel RK; Henikoff S; Chakrabarty AM J Bacteriol; 1993 Jan; 175(2):417-27. PubMed ID: 8419291 [TBL] [Abstract][Full Text] [Related]
39. Aromatic ligand binding and intramolecular signalling of the phenol-responsive sigma54-dependent regulator DmpR. O'Neill E; Ng LC; Sze CC; Shingler V Mol Microbiol; 1998 Apr; 28(1):131-41. PubMed ID: 9593302 [TBL] [Abstract][Full Text] [Related]
40. Interaction of NahR, a LysR-type transcriptional regulator, with the alpha subunit of RNA polymerase in the naphthalene degrading bacterium, Pseudomonas putida NCIB 9816-4. Park W; Jeon CO; Madsen EL FEMS Microbiol Lett; 2002 Aug; 213(2):159-65. PubMed ID: 12167532 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]