These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 12892217)

  • 1. Elemental mapping of DNA chains by energy-filtering TEM.
    Aoyama K; Matsumoto R; Oka S
    J Electron Microsc (Tokyo); 2003; 52(3):283-9. PubMed ID: 12892217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertical Pt-C replication for TEM, a revolution in imaging non-periodic macromolecules, biological gels and low-density polymer networks.
    Ruben GC
    Micron; 1998 Oct; 29(5):359-96. PubMed ID: 9842722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional distributions of elements in biological samples by energy-filtered electron tomography.
    Leapman RD; Kocsis E; Zhang G; Talbot TL; Laquerriere P
    Ultramicroscopy; 2004 Jul; 100(1-2):115-25. PubMed ID: 15219696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification and thickness correction of EFTEM phosphorus maps.
    Aronova MA; Kim YC; Zhang G; Leapman RD
    Ultramicroscopy; 2007; 107(2-3):232-44. PubMed ID: 16979822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An approach to an objective background subtraction for elemental mapping with core-edges down to 50 eV: description, evaluation and application.
    Haking A; Troester H; Richter K; Crucifix C; Spring H; Trendelenburg MF
    Ultramicroscopy; 1999 Nov; 80(3):163-82. PubMed ID: 10573828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a mass-thickness marker to estimate systematic errors and statistical noise in the detection of phosphorus by electron spectroscopic imaging.
    Richter K; Haking A; Troester H; Spiess E; Spring H; Probst W; Schultz P; Witz J; Trendelenburg M
    Micron; 1997 Oct; 28(5):407-18. PubMed ID: 9519469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging the asymmetrical DNA bend induced by repressor activator protein 1 with scanning tunneling microscopy.
    Müller T; Gilson E; Schmidt R; Giraldo R; Sogo J; Gross H; Gasser SM
    J Struct Biol; 1994; 113(1):1-12. PubMed ID: 7880649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast in the electron spectroscopic imaging mode of a TEM. IV. Thick specimens imaged by the most-probable energy loss.
    Reimer L; Rennekamp R; Fromm I; Langenfeld M
    J Microsc; 1991 Apr; 162(Pt 1):3-14. PubMed ID: 1870112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EELS elemental mapping with unconventional methods. II. Applications to biological specimens.
    Trebbia P; Mory C
    Ultramicroscopy; 1990 Dec; 34(3):179-203. PubMed ID: 2288037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved acquisition technique for elemental mapping by energy-filtering TEM.
    Terada S; Aoyama T; Yano F; Mitsui Y
    J Electron Microsc (Tokyo); 2001; 50(2):83-7. PubMed ID: 11347715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thin dielectric film thickness determination by advanced transmission electron microscopy.
    Diebold AC; Foran B; Kisielowski C; Muller DA; Pennycook SJ; Principe E; Stemmer S
    Microsc Microanal; 2003 Dec; 9(6):493-508. PubMed ID: 14750984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of phosphorus localization by EFTEM of nucleic acid containing structures.
    Quintana C; Marco S; Bonnet N; Risco C; Gutiérrez ML; Guerrero A; Carrascosa JL
    Micron; 1998 Aug; 29(4):297-307. PubMed ID: 9744088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging thin films of nanoporous low-k dielectrics: comparison between ultramicrotomy and focused ion beam preparations for transmission electron microscopy.
    Thompson LE; Rice PM; Delenia E; Lee VY; Brock PJ; Magbitang TP; Dubois G; Volksen W; Miller RD; Kim HC
    Microsc Microanal; 2006 Apr; 12(2):156-9. PubMed ID: 17481352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of detectability limits for elemental mapping by EF-TEM and STEM-XEDS.
    Watanabe M; Williams DB; Tomokiyo Y
    Micron; 2003; 34(3-5):173-83. PubMed ID: 12895488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contamination-free transmission electron microscopy for high-resolution carbon elemental mapping of polymers.
    Horiuchi S; Hanada T; Ebisawa M; Matsuda Y; Kobayashi M; Takahara A
    ACS Nano; 2009 May; 3(5):1297-304. PubMed ID: 19402650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST).
    Aronova MA; Kim YC; Harmon R; Sousa AA; Zhang G; Leapman RD
    J Struct Biol; 2007 Oct; 160(1):35-48. PubMed ID: 17693097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards single atom analysis of biological structures.
    Leapman RD; Rizzo NW
    Ultramicroscopy; 1999 Jun; 78(1-4):251-68. PubMed ID: 10389278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning force microscopy of circular and linear plasmid DNA spread on mica with a quaternary ammonium salt.
    Schaper A; Pietrasanta LI; Jovin TM
    Nucleic Acids Res; 1993 Dec; 21(25):6004-9. PubMed ID: 8290363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping interaction forces with the atomic force microscope.
    Radmacher M; Cleveland JP; Fritz M; Hansma HG; Hansma PK
    Biophys J; 1994 Jun; 66(6):2159-65. PubMed ID: 8075349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple topological labeling for imaging single plasmids.
    Escudé C; Roulon T; Lyonnais S; Le Cam E
    Anal Biochem; 2007 Mar; 362(1):55-62. PubMed ID: 17250797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.