These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12892492)

  • 1. Use of a diffusion model for mono- and bicomponent anion-exchange of two isoenzymes of glucoamylase from Aspergillus niger in a fixed bed.
    Soriano R; Bautista LF; Martínez M; Aracil J
    Biotechnol Prog; 2003; 19(4):1283-91. PubMed ID: 12892492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of copper(II) from aqueous phase by Purolite C100-MB cation exchange resin in fixed bed columns: modeling.
    Hamdaoui O
    J Hazard Mater; 2009 Jan; 161(2-3):737-46. PubMed ID: 18486328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and theoretical study of anion-exchange preparative chromatography for neptunium: the first application to thorium(IV) and its equilibrium and kinetics.
    Yamamura T; Miyakoshi T; Shiokawa Y; Mitsugashira T
    J Chromatogr A; 2007 Oct; 1169(1-2):95-102. PubMed ID: 17880985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanded bed adsorption of protein with DEAE Spherodex M.
    Chen WD; Tong XD; Dong XY; Sun Y
    Biotechnol Prog; 2003; 19(3):880-6. PubMed ID: 12790653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucoamylase of Aspergillus niger.
    Bartoszewicz K
    Acta Biochim Pol; 1986; 33(1):17-29. PubMed ID: 3087124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of plasmid DNA on anion exchange chromatography media.
    Tarmann C; Jungbauer A
    J Sep Sci; 2008 Aug; 31(14):2605-18. PubMed ID: 18461569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of arsenic adsorption kinetics of synthetic and contaminated groundwater on natural laterite.
    Maiti A; Sharma H; Basu JK; De S
    J Hazard Mater; 2009 Dec; 172(2-3):928-34. PubMed ID: 19717233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Authenticity and reconstitution of immobilized enzymes: characterization and denaturation/renaturation of glucoamylase II.
    Gottschalk N; Jaenicke R
    Biotechnol Appl Biochem; 1991 Dec; 14(3):324-35. PubMed ID: 1777117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible immobilization of glucoamylase by ionic adsorption on sepabeads coated with polyethyleneimine.
    Torres R; Pessela BC; Mateo C; Ortiz C; Fuentes M; Guisan JM; Fernandez-Lafuente R
    Biotechnol Prog; 2004; 20(4):1297-300. PubMed ID: 15296467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of biorecognition of glucoamylases with Concanavalin A by glycosylation via recombinant expression.
    Mislovicová D; Masárová J; Hostinová E; Gasperík J; Gemeiner P
    Int J Biol Macromol; 2006 Nov; 39(4-5):286-90. PubMed ID: 16797066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatographic behavior of a polyclonal antibody mixture on a strong cation exchanger column. Part II: Adsorption modelling.
    Forrer N; Butté A; Morbidelli M
    J Chromatogr A; 2008 Dec; 1214(1-2):71-80. PubMed ID: 18962650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network.
    Bryjak J; Ciesielski K; Zbiciński I
    J Biotechnol; 2004 Oct; 114(1-2):177-85. PubMed ID: 15464611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor.
    Skodras G; Diamantopoulou I; Pantoleontos G; Sakellaropoulos GP
    J Hazard Mater; 2008 Oct; 158(1):1-13. PubMed ID: 18321645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigation of axial and local particle size distribution on expanded bed adsorption process.
    Kaczmarski K; Bellot JC
    Biotechnol Prog; 2004; 20(3):786-92. PubMed ID: 15176883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification, characterization, and partial purification of glucoamylase from Aspergillus niger (syn A. ficuum) NRRL 3135.
    Vandersall AS; Cameron RG; Nairn CJ; Yelenosky G; Wodzinski RJ
    Prep Biochem; 1995; 25(1-2):29-55. PubMed ID: 7603971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and simulation study of hydrogen sulfide adsorption on impregnated activated carbon under anaerobic conditions.
    Xiao Y; Wang S; Wu D; Yuan Q
    J Hazard Mater; 2008 May; 153(3):1193-200. PubMed ID: 17976901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of glucoamylase produced by Aspergillus niger in solid state fermentation.
    Selvakumar P; Ashakumary L; Helen A; Pandey A
    Lett Appl Microbiol; 1996 Dec; 23(6):403-6. PubMed ID: 8987901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Isolation of a highly purified glucoamylase from Aspergillus niger 16/132].
    Gargova S; Pishtiĭski I; Beshkov M
    Acta Microbiol Bulg; 1985; 16():43-50. PubMed ID: 3929568
    [No Abstract]   [Full Text] [Related]  

  • 19. A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY.
    Ostroski IC; Barros MA; Silva EA; Dantas JH; Arroyo PA; Lima OC
    J Hazard Mater; 2009 Jan; 161(2-3):1404-12. PubMed ID: 18565651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Glucoamylase enzyme preparation from the culture broth of an Aspergillus niger B77 strain. I. The isolation of the crude enzyme preparation and study of its properties].
    Tsekova K; Georgieva M; Ganchev I
    Acta Microbiol Bulg; 1983; 13():83-90. PubMed ID: 6417985
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.