BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 12893532)

  • 1. Modulation of entry of enveloped viruses by cholesterol and sphingolipids (Review).
    Rawat SS; Viard M; Gallo SA; Rein A; Blumenthal R; Puri A
    Mol Membr Biol; 2003; 20(3):243-54. PubMed ID: 12893532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipids as modulators of membrane fusion mediated by viral fusion proteins.
    Teissier E; Pécheur EI
    Eur Biophys J; 2007 Nov; 36(8):887-99. PubMed ID: 17882414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingolipids: modulators of HIV-1 infection and pathogenesis.
    Rawat SS; Johnson BT; Puri A
    Biosci Rep; 2005; 25(5-6):329-43. PubMed ID: 16307380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of cholesterol and sphingolipids in chemokine receptor function and HIV-1 envelope glycoprotein-mediated fusion.
    Ablan S; Rawat SS; Viard M; Wang JM; Puri A; Blumenthal R
    Virol J; 2006 Dec; 3():104. PubMed ID: 17187670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vaccinia virus penetration requires cholesterol and results in specific viral envelope proteins associated with lipid rafts.
    Chung CS; Huang CY; Chang W
    J Virol; 2005 Feb; 79(3):1623-34. PubMed ID: 15650188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of enveloped virus entry into cells.
    Kielian M; Jungerwirth S
    Mol Biol Med; 1990 Feb; 7(1):17-31. PubMed ID: 2182968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingolipid and cholesterol dependence of alphavirus membrane fusion. Lack of correlation with lipid raft formation in target liposomes.
    Waarts BL; Bittman R; Wilschut J
    J Biol Chem; 2002 Oct; 277(41):38141-7. PubMed ID: 12138173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human herpesvirus-6 infection induces the reorganization of membrane microdomains in target cells, which are required for virus entry.
    Tang H; Kawabata A; Takemoto M; Yamanishi K; Mori Y
    Virology; 2008 Sep; 378(2):265-71. PubMed ID: 18621409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The HIV lipidome: a raft with an unusual composition.
    Brügger B; Glass B; Haberkant P; Leibrecht I; Wieland FT; Kräusslich HG
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2641-6. PubMed ID: 16481622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The concept of transmembrane asymmetry of lateral domains in biomemranes and influenza virus envelope fine structure].
    Radiukhin VA
    Mol Biol (Mosk); 2009; 43(4):579-89. PubMed ID: 19807018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amphotropic murine leukaemia virus envelope protein is associated with cholesterol-rich microdomains.
    Beer C; Pedersen L; Wirth M
    Virol J; 2005 Apr; 2():36. PubMed ID: 15840168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholesterol and sphingolipids as lipid organizers of the immune cells' plasma membrane: their impact on the functions of MHC molecules, effector T-lymphocytes and T-cell death.
    Gombos I; Kiss E; Detre C; László G; Matkó J
    Immunol Lett; 2006 Apr; 104(1-2):59-69. PubMed ID: 16388855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid rafts as functional heterogeneity in cell membranes.
    Lingwood D; Kaiser HJ; Levental I; Simons K
    Biochem Soc Trans; 2009 Oct; 37(Pt 5):955-60. PubMed ID: 19754431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIV-1, lipid rafts, and antibodies to liposomes: implications for anti-viral-neutralizing antibodies.
    Alving CR; Beck Z; Karasavva N; Matyas GR; Rao M
    Mol Membr Biol; 2006; 23(6):453-65. PubMed ID: 17127618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingomyelin-enriched microdomains define the efficiency of native Ca(2+)-triggered membrane fusion.
    Rogasevskaia T; Coorssen JR
    J Cell Sci; 2006 Jul; 119(Pt 13):2688-94. PubMed ID: 16757517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SNARE proteins and 'membrane rafts'.
    Lang T
    J Physiol; 2007 Dec; 585(Pt 3):693-8. PubMed ID: 17478530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusion of a New World Alphavirus with Membrane Microdomains Involving Partially Reversible Conformational Changes in the Viral Spike Proteins.
    Sousa IP; Carvalho CAM; Mendes YS; Weissmuller G; Oliveira AC; Gomes AMO
    Biochemistry; 2017 Oct; 56(43):5823-5830. PubMed ID: 28956592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanisms of lipid-protein rearrangements during viral infection.
    Chizmadzhev YA
    Bioelectrochemistry; 2004 Jun; 63(1-2):129-36. PubMed ID: 15110263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P-glycoprotein and 'lipid rafts': some ambiguous mutual relationships (floating on them, building them or meeting them by chance?).
    Orlowski S; Martin S; Escargueil A
    Cell Mol Life Sci; 2006 May; 63(9):1038-59. PubMed ID: 16721513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.