BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 12893532)

  • 21. Structure and function of lipid rafts in human activated T cells.
    Tani-ichi S; Maruyama K; Kondo N; Nagafuku M; Kabayama K; Inokuchi J; Shimada Y; Ohno-Iwashita Y; Yagita H; Kawano S; Kosugi A
    Int Immunol; 2005 Jun; 17(6):749-58. PubMed ID: 15967787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viral glycoprotein-mediated cell fusion assays using vaccinia virus vectors.
    Bossart KN; Broder CC
    Methods Mol Biol; 2004; 269():309-32. PubMed ID: 15114023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholesterol, regulated exocytosis and the physiological fusion machine.
    Churchward MA; Coorssen JR
    Biochem J; 2009 Sep; 423(1):1-14. PubMed ID: 19740078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrophobic alpha-helices 1 and 2 of herpes simplex virus gH interact with lipids, and their mimetic peptides enhance virus infection and fusion.
    Gianni T; Fato R; Bergamini C; Lenaz G; Campadelli-Fiume G
    J Virol; 2006 Aug; 80(16):8190-8. PubMed ID: 16873275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The nutritional significance of lipid rafts.
    Yaqoob P
    Annu Rev Nutr; 2009; 29():257-82. PubMed ID: 19400697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids.
    Cheng ZJ; Singh RD; Marks DL; Pagano RE
    Mol Membr Biol; 2006; 23(1):101-10. PubMed ID: 16611585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipids as targeting signals: lipid rafts and intracellular trafficking.
    Helms JB; Zurzolo C
    Traffic; 2004 Apr; 5(4):247-54. PubMed ID: 15030566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipid microdomains and k(+) channel compartmentation: detergent and non-detergent-based methods for the isolation and characterisation of cholesterol-enriched lipid rafts.
    Sampson LJ; Dart C
    Methods Mol Biol; 2008; 491():91-101. PubMed ID: 18998086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-density rafts preferentially host the complement activator measles virus F glycoprotein but not the regulators of complement activation.
    Ghannam A; Hammache D; Matias C; Louwagie M; Garin J; Gerlier D
    Mol Immunol; 2008 Jun; 45(11):3036-44. PubMed ID: 18455798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FcgammaRI (CD64) resides constitutively in lipid rafts.
    Beekman JM; van der Linden JA; van de Winkel JG; Leusen JH
    Immunol Lett; 2008 Mar; 116(2):149-55. PubMed ID: 18207250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sphingolipids in infectious diseases.
    Hanada K
    Jpn J Infect Dis; 2005 Jun; 58(3):131-48. PubMed ID: 15973004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sphingolipid topology and the dynamic organization and function of membrane proteins.
    van Meer G; Hoetzl S
    FEBS Lett; 2010 May; 584(9):1800-5. PubMed ID: 19837070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sphingolipids as Potential Therapeutic Targets against Enveloped Human RNA Viruses.
    Yager EJ; Konan KV
    Viruses; 2019 Oct; 11(10):. PubMed ID: 31581580
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane.
    Nieva JL; Bron R; Corver J; Wilschut J
    EMBO J; 1994 Jun; 13(12):2797-804. PubMed ID: 8026464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Entry process of enveloped viruses to host cells].
    Miyauchi K
    Uirusu; 2009 Dec; 59(2):205-13. PubMed ID: 20218329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell entry of enveloped viruses.
    Cosset FL; Lavillette D
    Adv Genet; 2011; 73():121-83. PubMed ID: 21310296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of the lipid rafts in the life cycle of canine coronavirus.
    Pratelli A; Colao V
    J Gen Virol; 2015 Feb; 96(Pt 2):331-337. PubMed ID: 25381058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and analysis of lipid rafts in cell-cell interactions.
    Landry A; Xavier R
    Methods Mol Biol; 2006; 341():251-82. PubMed ID: 16799204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cholesterol-rich lipid rafts play a critical role in bovine parainfluenza virus type 3 (BPIV3) infection.
    Li L; Yu L; Hou X
    Res Vet Sci; 2017 Oct; 114():341-347. PubMed ID: 28654867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.