These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Kinetic lattice Boltzmann method for microscale gas flows: issues on boundary condition, relaxation time, and regularization. Niu XD; Hyodo SA; Munekata T; Suga K Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036711. PubMed ID: 17930365 [TBL] [Abstract][Full Text] [Related]
4. Lattice Boltzmann model for thermal transpiration. Tang GH; Zhang YH; Gu XJ; Barber RW; Emerson DR Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):027701. PubMed ID: 19391876 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the kinetic model equations. Liu S; Zhong C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033306. PubMed ID: 24730966 [TBL] [Abstract][Full Text] [Related]
7. Entropic lattice Boltzmann model for Burgers's equation. Boghosian BM; Love P; Yepez J Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1691-701. PubMed ID: 15306440 [TBL] [Abstract][Full Text] [Related]
8. Simulation of nasal flow by lattice Boltzmann methods. Finck M; Hänel D; Wlokas I Comput Biol Med; 2007 Jun; 37(6):739-49. PubMed ID: 16962572 [TBL] [Abstract][Full Text] [Related]
9. Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow. Tang GH; Gu XJ; Barber RW; Emerson DR; Zhang YH Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026706. PubMed ID: 18850972 [TBL] [Abstract][Full Text] [Related]
10. Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation. Zhang R; Shan X; Chen H Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046703. PubMed ID: 17155208 [TBL] [Abstract][Full Text] [Related]
11. Bulk and shear viscosities in lattice Boltzmann equations. Dellar PJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031203. PubMed ID: 11580323 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flows. Wang P; Wang LP; Guo Z Phys Rev E; 2016 Oct; 94(4-1):043304. PubMed ID: 27841571 [TBL] [Abstract][Full Text] [Related]
13. Two-fluid model based on the lattice Boltzmann equation. Wang T; Wang J Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):045301. PubMed ID: 15903716 [TBL] [Abstract][Full Text] [Related]
14. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip. Park HM; Kim TW Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287 [TBL] [Abstract][Full Text] [Related]
15. Turbulence simulation by adaptive multi-relaxation lattice boltzmann modeling. Liu X; Pang WM; Qin J; Fu CW IEEE Trans Vis Comput Graph; 2014 Feb; 20(2):289-302. PubMed ID: 24356370 [TBL] [Abstract][Full Text] [Related]
16. Multiscale gas-kinetic simulation for continuum and near-continuum flows. Xu K; Liu H Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016306. PubMed ID: 17358252 [TBL] [Abstract][Full Text] [Related]