These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12894403)

  • 1. Anatomic and functional reorganization of somatosensory cortex in mature primates after peripheral nerve and spinal cord injury.
    Kaas JH; Collins CE
    Adv Neurol; 2003; 93():87-95. PubMed ID: 12894403
    [No Abstract]   [Full Text] [Related]  

  • 2. Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients.
    Cristante AF; Barros-Filho TE; Tatsui N; Mendrone A; Caldas JG; Camargo A; Alexandre A; Teixeira WG; Oliveira RP; Marcon RM
    Spinal Cord; 2009 Oct; 47(10):733-8. PubMed ID: 19333245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Branching thalamic afferents link action and perception.
    Guillery RW
    J Neurophysiol; 2003 Aug; 90(2):539-48. PubMed ID: 12904485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Anatomy of ascending sensory pathways in the spinal cord].
    Mizuno N
    No To Shinkei; 1990 Dec; 42(12):1125-40. PubMed ID: 2083130
    [No Abstract]   [Full Text] [Related]  

  • 6. Promoting anatomical plasticity and recovery of function after traumatic injury to the central or peripheral nervous system.
    Priestley JV
    Brain; 2007 Apr; 130(Pt 4):895-7. PubMed ID: 17438015
    [No Abstract]   [Full Text] [Related]  

  • 7. Chapter 27: Neural plasticity after nerve injury and regeneration.
    Navarro X
    Int Rev Neurobiol; 2009; 87():483-505. PubMed ID: 19682656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study.
    Jurkiewicz MT; Mikulis DJ; McIlroy WE; Fehlings MG; Verrier MC
    Neurorehabil Neural Repair; 2007; 21(6):527-38. PubMed ID: 17507643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies.
    Belegu V; Oudega M; Gary DS; McDonald JW
    Neurosurg Clin N Am; 2007 Jan; 18(1):143-68, xi. PubMed ID: 17244561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity in the injured spinal cord: can we use it to advantage to reestablish effective bladder voiding and continence?
    Zinck ND; Downie JW
    Prog Brain Res; 2006; 152():147-62. PubMed ID: 16198699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of descending axon tracts after spinal cord injury.
    Deumens R; Koopmans GC; Joosten EA
    Prog Neurobiol; 2005; 77(1-2):57-89. PubMed ID: 16271433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral nerve grafts in a spinal cord prosthesis result in regeneration and motor evoked potentials following spinal cord resection.
    Nordblom J; Persson JK; Svensson M; Mattsson P
    Restor Neurol Neurosci; 2009; 27(4):285-95. PubMed ID: 19738322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of new brainstem connections in adult monkeys with massive sensory loss.
    Jain N; Florence SL; Qi HX; Kaas JH
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5546-50. PubMed ID: 10779564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat.
    Nakamura M; Okano H; Toyama Y; Dai HN; Finn TP; Bregman BS
    J Neurosci Res; 2005 Aug; 81(4):457-68. PubMed ID: 15968644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale reorganization of the somatosensory cortex following spinal cord injuries is due to brainstem plasticity.
    Kambi N; Halder P; Rajan R; Arora V; Chand P; Arora M; Jain N
    Nat Commun; 2014 Apr; 5():3602. PubMed ID: 24710038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of oral somatosensory and motor functions and their clinical correlates.
    Sessle BJ
    J Oral Rehabil; 2006 Apr; 33(4):243-61. PubMed ID: 16629880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunosuppressants: neuroprotection and promoting neurological recovery following peripheral nerve and spinal cord lesions.
    Sosa I; Reyes O; Kuffler DP
    Exp Neurol; 2005 Sep; 195(1):7-15. PubMed ID: 15935348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury.
    de Groat WC; Yoshimura N
    Prog Brain Res; 2006; 152():59-84. PubMed ID: 16198694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reorganization of somatosensory and motor cortex after peripheral nerve or spinal cord injury in primates.
    Kaas JH
    Prog Brain Res; 2000; 128():173-9. PubMed ID: 11105677
    [No Abstract]   [Full Text] [Related]  

  • 20. Somatotopic reorganization in the brainstem and thalamus following peripheral nerve injury in adult primates.
    Churchill JD; Arnold LL; Garraghty PE
    Brain Res; 2001 Aug; 910(1-2):142-52. PubMed ID: 11489264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.