These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
48 related articles for article (PubMed ID: 12894888)
1. China-made platinum-iridium alloy stent implanted in the coronary of dog. Zhu J; Cui C; Cui H; Ma A; Wang D Chin Med Sci J; 2002 Mar; 17(1):56. PubMed ID: 12894888 [No Abstract] [Full Text] [Related]
2. Comparative assessment of iridium oxide and platinum alloy wires using an in vitro glial scar assay. Ereifej ES; Khan S; Newaz G; Zhang J; Auner GW; VandeVord PJ Biomed Microdevices; 2013 Dec; 15(6):917-24. PubMed ID: 23764951 [TBL] [Abstract][Full Text] [Related]
3. Initial exploration of Ti-Ta, Ti-Ta-Ir and Ti-Ir alloys: Candidate materials for coronary stents. O'Brien B; Stinson J; Carroll W Acta Biomater; 2008 Sep; 4(5):1553-9. PubMed ID: 18396116 [TBL] [Abstract][Full Text] [Related]
4. In vivo distribution of c-myc antisense oligodeoxynucleotides local delivered by gelatin-coated platinum-iridium stents in rabbits and its effect on apoptosis. Zhang XX; Cui CC; Xu XG; Hu XS; Fang WH; Kuang BJ Chin Med J (Engl); 2004 Feb; 117(2):258-63. PubMed ID: 14975213 [TBL] [Abstract][Full Text] [Related]
5. The platinum chromium element stent platform: from alloy, to design, to clinical practice. Menown IB; Noad R; Garcia EJ; Meredith I Adv Ther; 2010 Mar; 27(3):129-41. PubMed ID: 20437213 [TBL] [Abstract][Full Text] [Related]
6. GOLDART--Gold Alloy Versus Platinum-Iridium Electrode for Ablation of AVNRT. Stühlinger M; Steinwender C; Schnöll F; Winter S; Freihoff F; Wurtz S; Hintringer F J Cardiovasc Electrophysiol; 2008 Mar; 19(3):242-6. PubMed ID: 18081771 [TBL] [Abstract][Full Text] [Related]
7. PLATINUM China: a prospective, randomized investigation of the platinum chromium everolimus-eluting stent in de novo coronary artery lesions. Gao R; Han Y; Yang Y; Zhang J; Hou Y; Wang H; Li H; Fang Q; Yu B; Xu B; Allocco DJ; Dawkins KD Catheter Cardiovasc Interv; 2015 Mar; 85 Suppl 1():716-23. PubMed ID: 25631909 [TBL] [Abstract][Full Text] [Related]
8. [Mechanical analysis on a new type of biodegradable magnesium-alloy stent]. Wang X; Cui F; Li J; Zhao X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):338-41. PubMed ID: 19499798 [TBL] [Abstract][Full Text] [Related]
9. Finite element analysis of stent deployment: understanding stent fracture in percutaneous pulmonary valve implantation. Schievano S; Petrini L; Migliavacca F; Coats L; Nordmeyer J; Lurz P; Khambadkone S; Taylor AM; Dubini G; Bonhoeffer P J Interv Cardiol; 2007 Dec; 20(6):546-54. PubMed ID: 18042059 [TBL] [Abstract][Full Text] [Related]
10. Strut tissue coverage and endothelial cell coverage: a comparison between bare metal stent platforms and platinum chromium stents with and without everolimus-eluting coating. Soucy NV; Feygin JM; Tunstall R; Casey MA; Pennington DE; Huibregtse BA; Barry JJ EuroIntervention; 2010 Nov; 6(5):630-7. PubMed ID: 21044918 [TBL] [Abstract][Full Text] [Related]
11. Long-term intracoronary stent placement: arteriographic and histologic results after 7 years in a dog model. Robinson KA; Roubin GS; King SB Cathet Cardiovasc Diagn; 1996 May; 38(1):32-7. PubMed ID: 8722855 [TBL] [Abstract][Full Text] [Related]
12. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Lévesque J; Hermawan H; Dubé D; Mantovani D Acta Biomater; 2008 Mar; 4(2):284-95. PubMed ID: 18033745 [TBL] [Abstract][Full Text] [Related]
14. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Migliavacca F; Petrini L; Massarotti P; Schievano S; Auricchio F; Dubini G Biomech Model Mechanobiol; 2004 Jun; 2(4):205-17. PubMed ID: 15029511 [TBL] [Abstract][Full Text] [Related]
15. Longitudinal compression of the platinum-chromium everolimus-eluting stent during coronary implantation: predisposing mechanical properties, incidence, and predictors in a large patient cohort. Leibundgut G; Gick M; Toma A; Valina C; Löffelhardt N; Büttner HJ; Neumann FJ Catheter Cardiovasc Interv; 2013 Apr; 81(5):E206-14. PubMed ID: 22581708 [TBL] [Abstract][Full Text] [Related]
16. Short-term safety and efficacy of the biodegradable iron stent in mini-swine coronary arteries. Wu C; Qiu H; Hu XY; Ruan YM; Tian Y; Chu Y; Xu XL; Xu L; Tang Y; Gao RL Chin Med J (Engl); 2013; 126(24):4752-7. PubMed ID: 24342324 [TBL] [Abstract][Full Text] [Related]
17. Plasma-induced nanopillars on bare metal coronary stent surface for enhanced endothelialization. Loya MC; Brammer KS; Choi C; Chen LH; Jin S Acta Biomater; 2010 Dec; 6(12):4589-95. PubMed ID: 20624494 [TBL] [Abstract][Full Text] [Related]
18. Comparing coronary stent material performance on a common geometric platform through simulated bench testing. Grogan JA; Leen SB; McHugh PE J Mech Behav Biomed Mater; 2012 Aug; 12():129-38. PubMed ID: 22705476 [TBL] [Abstract][Full Text] [Related]
19. MOONLIGHT: a controlled registry of an iridium oxide-coated stent with angiographic follow-up. Di Mario C; Grube E; Nisanci Y; Reifart N; Colombo A; Rodermann J; Muller R; Umman S; Liistro F; Montorfano M; Alt E Int J Cardiol; 2004 Jun; 95(2-3):329-31. PubMed ID: 15193840 [No Abstract] [Full Text] [Related]
20. Fabrication of Mg alloy tubes for biodegradable stent application. Hanada K; Matsuzaki K; Huang X; Chino Y Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4746-50. PubMed ID: 24094183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]