These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structure, stability, and electronic and NMR properties of various oxo- and nitrido-derivatives of [L(Salen)Mn(III)]+, where L = none and imidazole. A density functional study. Khavrutskii IV; Musaev DG; Morokuma K Inorg Chem; 2003 Apr; 42(8):2606-21. PubMed ID: 12691568 [TBL] [Abstract][Full Text] [Related]
3. Transient intermediates from Mn(salen) with sterically hindered mesityl groups: interconversion between MnIV-phenolate and MnIII-phenoxyl radicals as an origin for unique reactivity. Kurahashi T; Kikuchi A; Tosha T; Shiro Y; Kitagawa T; Fujii H Inorg Chem; 2008 Mar; 47(5):1674-86. PubMed ID: 18237118 [TBL] [Abstract][Full Text] [Related]
4. What factors influence the ratio of C-H hydroxylation versus C=C epoxidation by a nonheme cytochrome P450 biomimetic? de Visser SP J Am Chem Soc; 2006 Dec; 128(49):15809-18. PubMed ID: 17147391 [TBL] [Abstract][Full Text] [Related]
5. Asymmetric epoxidation of olefins using novel chiral dinuclear Mn(III)-salen complexes with inherent phase-transfer capability in ionic liquids. Chen L; Cheng F; Jia L; Zhang A; Wu J; Tang N Chirality; 2011 Jan; 23(1):69-75. PubMed ID: 21125688 [TBL] [Abstract][Full Text] [Related]
6. Experimental bond critical point and local energy density properties determined for Mn-O, Fe-O, and Co-O bonded interactions for tephroite, Mn2SiO4, fayalite, Fe2SiO4, and Co2SiO4 olivine and selected organic metal complexes: comparison with properties calculated for non-transition and transition metal M-O bonded interactions for silicates and oxides. Gibbs GV; Downs RT; Cox DF; Rosso KM; Ross NL; Kirfel A; Lippmann T; Morgenroth W; Crawford TD J Phys Chem A; 2008 Sep; 112(37):8811-23. PubMed ID: 18714960 [TBL] [Abstract][Full Text] [Related]
7. Toward a catalytic cycle for the Mn-salen mediated alkene epoxidation: a computational approach. Cavallo L; Jacobsen H Inorg Chem; 2004 Mar; 43(6):2175-82. PubMed ID: 15018542 [TBL] [Abstract][Full Text] [Related]
8. Donor ligand effect on the nature of the oxygenating species in Mn(III)(salen)-catalyzed epoxidation of olefins: experimental evidence for multiple active oxidants. Collman JP; Zeng L; Brauman JI Inorg Chem; 2004 Apr; 43(8):2672-9. PubMed ID: 15074985 [TBL] [Abstract][Full Text] [Related]
9. Cooperative pull and push effects on the O-O bond cleavage in acylperoxo complexes of [(Salen)MnIIIL]: ensuring formation of manganese(V) oxo species. Khavrutskii IV; Musaev DG; Morokuma K Inorg Chem; 2005 Jan; 44(2):306-15. PubMed ID: 15651877 [TBL] [Abstract][Full Text] [Related]
10. Olefin epoxidation by the hydrogen peroxide adduct of a novel non-heme mangangese(IV) complex: demonstration of oxygen transfer by multiple mechanisms. Yin G; Buchalova M; Danby AM; Perkins CM; Kitko D; Carter JD; Scheper WM; Busch DH Inorg Chem; 2006 Apr; 45(8):3467-74. PubMed ID: 16602808 [TBL] [Abstract][Full Text] [Related]
11. Modular approach for the development of supported, monofunctionalized, salen catalysts. Holbach M; Weck M J Org Chem; 2006 Mar; 71(5):1825-36. PubMed ID: 16496967 [TBL] [Abstract][Full Text] [Related]
12. Mechanism-guided development of VO(salen)X complexes as catalysts for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers. Belokon YN; Clegg W; Harrington RW; Maleev VI; North M; Pujol MO; Usanov DL; Young C Chemistry; 2009; 15(9):2148-65. PubMed ID: 19145602 [TBL] [Abstract][Full Text] [Related]
13. Proton-Promoted and Anion-Enhanced Epoxidation of Olefins by Hydrogen Peroxide in the Presence of Nonheme Manganese Catalysts. Miao C; Wang B; Wang Y; Xia C; Lee YM; Nam W; Sun W J Am Chem Soc; 2016 Jan; 138(3):936-43. PubMed ID: 26720313 [TBL] [Abstract][Full Text] [Related]
14. Ru(II) catalysts supported by hydridotris(pyrazolyl)borate for the hydroarylation of olefins: reaction scope, mechanistic studies, and guides for the development of improved catalysts. Foley NA; Lee JP; Ke Z; Gunnoe TB; Cundari TR Acc Chem Res; 2009 May; 42(5):585-97. PubMed ID: 19296659 [TBL] [Abstract][Full Text] [Related]
15. The surprising nitrogen-analogue chemistry of the methyltrioxorhenium-catalyzed olefin epoxidation. Deubel DV J Am Chem Soc; 2003 Dec; 125(50):15308-9. PubMed ID: 14664572 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of homogeneous Ir(III) catalyzed regioselective arylation of olefins. Oxgaard J; Muller RP; Goddard WA; Periana RA J Am Chem Soc; 2004 Jan; 126(1):352-63. PubMed ID: 14709102 [TBL] [Abstract][Full Text] [Related]
17. Experimental evidence for multiple oxidation pathways in the (salen) Mn-catalyzed epoxidation of alkenes. Linde C; Koliaï N; Norrby PO; Akermark B Chemistry; 2002 Jun; 8(11):2568-73. PubMed ID: 12180336 [TBL] [Abstract][Full Text] [Related]
18. Isotope effects and the nature of enantioselectivity in the shi epoxidation. The importance of asynchronicity. Singleton DA; Wang Z J Am Chem Soc; 2005 May; 127(18):6679-85. PubMed ID: 15869289 [TBL] [Abstract][Full Text] [Related]
19. Monolayers of salen derivatives as catalytic planes for alkene oxidation in water. Pasc-Banu A; Sugisaki C; Gharsa T; Marty JD; Gascon I; Krämer M; Pozzi G; Desbat B; Quici S; Rico-Lattes I; Mingotaud C Chemistry; 2005 Oct; 11(20):6032-9. PubMed ID: 16052660 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic insights into the rhodium-catalyzed intramolecular ketone hydroacylation. Shen Z; Dornan PK; Khan HA; Woo TK; Dong VM J Am Chem Soc; 2009 Jan; 131(3):1077-91. PubMed ID: 19128061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]