These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 12895300)
1. Effects of neutral, cationic, and anionic chromium ascorbate complexes on isolated human mitochondrial and genomic DNA. Ay AN; Zümreoglu-Karan B; Oner R; Unaleroglu C; Oner C J Biochem Mol Biol; 2003 Jul; 36(4):403-8. PubMed ID: 12895300 [TBL] [Abstract][Full Text] [Related]
2. Formation of the amino acid-DNA complexes by hexavalent and trivalent chromium in vitro: importance of trivalent chromium and the phosphate group. Zhitkovich A; Voitkun V; Costa M Biochemistry; 1996 Jun; 35(22):7275-82. PubMed ID: 8679557 [TBL] [Abstract][Full Text] [Related]
3. Carcinogenic chromium(VI) induces cross-linking of vitamin C to DNA in vitro and in human lung A549 cells. Quievryn G; Messer J; Zhitkovich A Biochemistry; 2002 Mar; 41(9):3156-67. PubMed ID: 11863455 [TBL] [Abstract][Full Text] [Related]
4. Glutathione and free amino acids form stable complexes with DNA following exposure of intact mammalian cells to chromate. Zhitkovich A; Voitkun V; Costa M Carcinogenesis; 1995 Apr; 16(4):907-13. PubMed ID: 7728973 [TBL] [Abstract][Full Text] [Related]
5. Differential binding of chromium(VI) and chromium(III) complexes to salmon sperm nuclei and nuclear DNA and isolated calf thymus DNA. Hneihen AS; Standeven AM; Wetterhahn KE Carcinogenesis; 1993 Sep; 14(9):1795-803. PubMed ID: 8403202 [TBL] [Abstract][Full Text] [Related]
6. High mobility group proteins 1 and 2 recognize chromium-damaged DNA. Wang JF; Bashir M; Engelsberg BN; Witmer C; Rozmiarek H; Billings PC Carcinogenesis; 1997 Feb; 18(2):371-5. PubMed ID: 9054631 [TBL] [Abstract][Full Text] [Related]
7. Reductive metabolism of Cr(VI) by cysteine leads to the formation of binary and ternary Cr--DNA adducts in the absence of oxidative DNA damage. Zhitkovich A; Shrager S; Messer J Chem Res Toxicol; 2000 Nov; 13(11):1114-24. PubMed ID: 11087433 [TBL] [Abstract][Full Text] [Related]
8. Genotoxicity and mutagenicity of chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells. Quievryn G; Peterson E; Messer J; Zhitkovich A Biochemistry; 2003 Feb; 42(4):1062-70. PubMed ID: 12549927 [TBL] [Abstract][Full Text] [Related]
9. Unusual reactivity in a commercial chromium supplement compared to baseline DNA cleavage with synthetic chromium complexes. Chaudhary S; Pinkston J; Rabile MM; Van Horn JD J Inorg Biochem; 2005 Mar; 99(3):787-94. PubMed ID: 15708800 [TBL] [Abstract][Full Text] [Related]
10. Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro. Stearns DM; Kennedy LJ; Courtney KD; Giangrande PH; Phieffer LS; Wetterhahn KE Biochemistry; 1995 Jan; 34(3):910-9. PubMed ID: 7827049 [TBL] [Abstract][Full Text] [Related]
11. In vivo effects of ascorbate and glutathione on the uptake of chromium, formation of chromium(V), chromium-DNA binding and 8-hydroxy-2'-deoxyguanosine in liver and kidney of osteogenic disorder shionogi rats following treatment with chromium(VI). Yuann JM; Liu KJ; Hamilton JW; Wetterhahn KE Carcinogenesis; 1999 Jul; 20(7):1267-75. PubMed ID: 10383900 [TBL] [Abstract][Full Text] [Related]
12. Differential impact of ionic and coordinate covalent chromium (Cr)-DNA binding on DNA replication. Fornsaglio JL; O'Brien TJ; Patierno SR Mol Cell Biochem; 2005 Nov; 279(1-2):149-55. PubMed ID: 16283524 [TBL] [Abstract][Full Text] [Related]
13. Reaction of chromium(VI) with ascorbate produces chromium(V), chromium(IV), and carbon-based radicals. Stearns DM; Wetterhahn KE Chem Res Toxicol; 1994; 7(2):219-30. PubMed ID: 8199312 [TBL] [Abstract][Full Text] [Related]
14. Effects of glutathione on chromium-induced DNA crosslinking and DNA polymerase arrest. O'Brien T; Xu J; Patierno SR Mol Cell Biochem; 2001 Jun; 222(1-2):173-82. PubMed ID: 11678599 [TBL] [Abstract][Full Text] [Related]
15. Examining the Potential Formation of Ternary DNA Complexes with Chromium‑Cysteine, Chromium-Ascorbate, and Chromium-Glutathione and Implications for Their Carcinogenicity. Marchi S; Lankford E; Dorin B; Drummond E; Thomas SC; Woski SA; Vincent JB Biol Trace Elem Res; 2023 Oct; 201(10):5053-5066. PubMed ID: 36662348 [TBL] [Abstract][Full Text] [Related]
16. Chromium(III)-induced 8-hydroxydeoxyguanosine in DNA and its reduction by antioxidants: comparative effects of melatonin, ascorbate, and vitamin E. Qi W; Reiter RJ; Tan DX; Garcia JJ; Manchester LC; Karbownik M; Calvo JR Environ Health Perspect; 2000 May; 108(5):399-402. PubMed ID: 10811565 [TBL] [Abstract][Full Text] [Related]
17. Effects of mannitol or catalase on the generation of reactive oxygen species leading to DNA damage by Chromium(VI) reduction with ascorbate. Tsou TC; Lai HJ; Yang JL Chem Res Toxicol; 1999 Oct; 12(10):1002-9. PubMed ID: 10525278 [TBL] [Abstract][Full Text] [Related]
18. Formation of reactive oxygen species and DNA strand breakage during interaction of chromium (III) and hydrogen peroxide in vitro: evidence for a chromium (III)-mediated Fenton-like reaction. Tsou TC; Yang JL Chem Biol Interact; 1996 Dec; 102(3):133-53. PubMed ID: 9021167 [TBL] [Abstract][Full Text] [Related]
19. Chromium(VI) treatment of normal human lung cells results in guanine-specific DNA polymerase arrest, DNA-DNA cross-links and S-phase blockade of cell cycle. Xu J; Bubley GJ; Detrick B; Blankenship LJ; Patierno SR Carcinogenesis; 1996 Jul; 17(7):1511-7. PubMed ID: 8706257 [TBL] [Abstract][Full Text] [Related]
20. Lower mutagenicity but higher stability of Cr-DNA adducts formed during gradual chromate activation with ascorbate. Quievryn G; Messer J; Zhitkovich A Carcinogenesis; 2006 Nov; 27(11):2316-21. PubMed ID: 16714765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]