These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 12895437)

  • 1. Repair of chronic spinal cord injury.
    Houle JD; Tessler A
    Exp Neurol; 2003 Aug; 182(2):247-60. PubMed ID: 12895437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration.
    Tobias CA; Shumsky JS; Shibata M; Tuszynski MH; Fischer I; Tessler A; Murray M
    Exp Neurol; 2003 Nov; 184(1):97-113. PubMed ID: 14637084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regrowth of acute and chronic injured spinal pathways within supra-lesional post-traumatic nerve grafts.
    Decherchi P; Gauthier P
    Neuroscience; 2000; 101(1):197-210. PubMed ID: 11068148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury.
    Jin Y; Fischer I; Tessler A; Houle JD
    Exp Neurol; 2002 Sep; 177(1):265-75. PubMed ID: 12429228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New strategies for repairing the injured spinal cord: the role of stem cells.
    Garbossa D; Fontanella M; Fronda C; Benevello C; Muraca G; Ducati A; Vercelli A
    Neurol Res; 2006 Jul; 28(5):500-4. PubMed ID: 16808879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical activity-mediated functional recovery after spinal cord injury: potential roles of neural stem cells.
    Teng YD; Liao WL; Choi H; Konya D; Sabharwal S; Langer R; Sidman RL; Snyder EY; Frontera WR
    Regen Med; 2006 Nov; 1(6):763-76. PubMed ID: 17465758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord.
    Hendriks WT; Ruitenberg MJ; Blits B; Boer GJ; Verhaagen J
    Prog Brain Res; 2004; 146():451-76. PubMed ID: 14699980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes.
    Sachdeva R; Theisen CC; Ninan V; Twiss JL; Houlé JD
    Exp Neurol; 2016 Feb; 276():72-82. PubMed ID: 26366525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats.
    Lynskey JV; Sandhu FA; Dai HN; McAtee M; Slotkin JR; MacArthur L; Bregman BS
    J Neurotrauma; 2006 May; 23(5):617-34. PubMed ID: 16689666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural stem cell mediated recovery is enhanced by Chondroitinase ABC pretreatment in chronic cervical spinal cord injury.
    Suzuki H; Ahuja CS; Salewski RP; Li L; Satkunendrarajah K; Nagoshi N; Shibata S; Fehlings MG
    PLoS One; 2017; 12(8):e0182339. PubMed ID: 28771534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy.
    Nori S; Nakamura M; Okano H
    Prog Brain Res; 2017; 231():33-56. PubMed ID: 28554400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous application of two neurotrophic factors after spinal cord injury.
    Bohnert DM; Purvines S; Shapiro S; Borgens RB
    J Neurotrauma; 2007 May; 24(5):846-63. PubMed ID: 17518539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplantation of neural stem cells into the spinal cord after injury.
    Okano H; Ogawa Y; Nakamura M; Kaneko S; Iwanami A; Toyama Y
    Semin Cell Dev Biol; 2003 Jun; 14(3):191-8. PubMed ID: 12948354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies.
    Belegu V; Oudega M; Gary DS; McDonald JW
    Neurosurg Clin N Am; 2007 Jan; 18(1):143-68, xi. PubMed ID: 17244561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration.
    Blits B; Boer GJ; Verhaagen J
    Cell Transplant; 2002; 11(6):593-613. PubMed ID: 12428749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat.
    Bregman BS; McAtee M; Dai HN; Kuhn PL
    Exp Neurol; 1997 Dec; 148(2):475-94. PubMed ID: 9417827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise and Peripheral Nerve Grafts as a Strategy To Promote Regeneration after Acute or Chronic Spinal Cord Injury.
    Theisen CC; Sachdeva R; Austin S; Kulich D; Kranz V; Houle JD
    J Neurotrauma; 2017 May; 34(10):1909-1914. PubMed ID: 28437223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair.
    Blesch A; Lu P; Tuszynski MH
    Brain Res Bull; 2002 Apr; 57(6):833-8. PubMed ID: 12031281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.