BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12895512)

  • 1. Effects of early isolation on layer II neurons in the entorhinal cortex of the guinea pig.
    Bartesaghi R; Raffi M; Severi S
    Neuroscience; 2003; 120(3):721-32. PubMed ID: 12895512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of early environment on pyramidal neuron morphology in field CA1 of the guinea-pig.
    Bartesaghi R; Severi S; Guidi S
    Neuroscience; 2003; 116(3):715-32. PubMed ID: 12573714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of early environment on field CA2 pyramidal neurons in the guinea-pig.
    Bartesaghi R; Severi S
    Neuroscience; 2004; 123(3):703-14. PubMed ID: 14706782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of early isolation on signal transfer in the entorhinal cortex-dentate-hippocampal system.
    Bartesaghi R; Raffi M; Ciani E
    Neuroscience; 2006 Feb; 137(3):875-90. PubMed ID: 16325342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of early environment on granule cell morphology in the dentate gyrus of the guinea-pig.
    Bartesaghi R; Serrai A
    Neuroscience; 2001; 102(1):87-100. PubMed ID: 11226672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of early environment on field CA3a pyramidal neuron morphology in the guinea-pig.
    Bartesaghi R; Severi S
    Neuroscience; 2002; 110(3):475-88. PubMed ID: 11906787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of early isolation on the synaptic function in the dentate gyrus and field CA1 of the guinea pig.
    Bartesaghi R
    Hippocampus; 2004; 14(4):482-98. PubMed ID: 15224984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex differences in the hippocampal dentate gyrus of the guinea-pig before puberty.
    Bartesaghi R; Guidi S; Severi S; Contestabile A; Ciani E
    Neuroscience; 2003; 121(2):327-39. PubMed ID: 14521992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of perforant path neurons to field CA1 by hippocampal projections.
    Bartesaghi R; Gessi T
    Hippocampus; 2003; 13(2):235-49. PubMed ID: 12699331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex differences in the hilar mossy cells of the guinea-pig before puberty.
    Guidi S; Severi S; Ciani E; Bartesaghi R
    Neuroscience; 2006 May; 139(2):565-76. PubMed ID: 16458436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys.
    Bartesaghi R; Gessi T
    Hippocampus; 2004; 14(8):948-63. PubMed ID: 15390176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex-specific dendritic morphology of hippocampal pyramidal neurons in the adolescent and young adult rats.
    Yarmohammadi-Samani P; Vatanparast J
    Int J Dev Neurosci; 2024 Feb; 84(1):47-63. PubMed ID: 37933732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex differences in the dendritic branching of dentate granule cells following differential experience.
    Juraska JM; Fitch JM; Henderson C; Rivers N
    Brain Res; 1985 Apr; 333(1):73-80. PubMed ID: 3995290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The entorhinal cortex entrains fast CA1 hippocampal oscillations in the anaesthetized guinea-pig: role of the monosynaptic component of the perforant path.
    Charpak S; Paré D; Llinás R
    Eur J Neurosci; 1995 Jul; 7(7):1548-57. PubMed ID: 7551181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiology of the entorhinal and perirhinal projections to the hippocampus studied by current source density analysis.
    Canning KJ; Wu K; Peloquin P; Kloosterman F; Leung LS
    Ann N Y Acad Sci; 2000 Jun; 911():55-72. PubMed ID: 10911867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of afferent innervation and neuronal activity in dendritic development and spine maturation of fascia dentata granule cells.
    Frotscher M; Drakew A; Heimrich B
    Cereb Cortex; 2000 Oct; 10(10):946-51. PubMed ID: 11007545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1--an anatomical study in the rat.
    Kajiwara R; Wouterlood FG; Sah A; Boekel AJ; Baks-te Bulte LT; Witter MP
    Hippocampus; 2008; 18(3):266-80. PubMed ID: 18000818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Input-output relations in the entorhinal-hippocampal-entorhinal loop: entorhinal cortex and dentate gyrus.
    Bartesaghi R; Gessi T; Migliore M
    Hippocampus; 1995; 5(5):440-51. PubMed ID: 8773256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Input-output relations in the entorhinal cortex-dentate-hippocampal system: evidence for a non-linear transfer of signals.
    Bartesaghi R; Migliore M; Gessi T
    Neuroscience; 2006 Sep; 142(1):247-65. PubMed ID: 16844310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic remodeling of dentate granule cells following a combined entorhinal cortex/fimbria fornix lesion.
    Schauwecker PE; McNeill TH
    Exp Neurol; 1996 Sep; 141(1):145-53. PubMed ID: 8797677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.