BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12895512)

  • 21. The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation.
    van Groen T; Miettinen P; Kadish I
    Hippocampus; 2003; 13(1):133-49. PubMed ID: 12625464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dendritic morphology of pyramidal neurons in the rat hippocampal CA3 area. II. Effects of gender and the environment.
    Juraska JM; Fitch JM; Washburne DL
    Brain Res; 1989 Feb; 479(1):115-9. PubMed ID: 2466534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sex differences in the stereological parameters of the hippocampal dentate gyrus of the guinea-pig before puberty.
    Severi S; Guidi S; Ciani E; Bartesaghi R
    Neuroscience; 2005; 132(2):375-87. PubMed ID: 15802190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential vulnerability of the subiculum and entorhinal cortex of the adult rat to prolonged protein deprivation.
    Andrade JP; Madeira MD; Paula-Barbosa MM
    Hippocampus; 1998; 8(1):33-47. PubMed ID: 9519885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Connectional specification of regenerating entorhinal projection neuron classes cannot be overridden by altered target availability in postnatal organotypic slice co-culture.
    Li D; Field PM; Raisman G
    Exp Neurol; 1996 Nov; 142(1):151-60. PubMed ID: 8912906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lateral entorhinal, perirhinal, and amygdala-entorhinal transition projections to hippocampal CA1 and dentate gyrus in the rat: a current source density study.
    Canning KJ; Leung LS
    Hippocampus; 1997; 7(6):643-55. PubMed ID: 9443060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unilateral entorhinal denervation leads to long-lasting dendritic alterations of mouse hippocampal granule cells.
    Vuksic M; Del Turco D; Vlachos A; Schuldt G; Müller CM; Schneider G; Deller T
    Exp Neurol; 2011 Aug; 230(2):176-85. PubMed ID: 21536031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytoarchitecture, neuronal composition, and entorhinal afferents of the flying fox hippocampus.
    Buhl EH; Dann JF
    Hippocampus; 1991 Apr; 1(2):131-52. PubMed ID: 1727000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topographic activation of the medial entorhinal cortex by presubicular commissural projections.
    Bartesaghi R; Di Maio V; Gessi T
    J Comp Neurol; 2005 Jul; 487(3):283-99. PubMed ID: 15892102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dendritic morphology is altered in hippocampal neurons following prenatal compromise.
    Dieni S; Rees S
    J Neurobiol; 2003 Apr; 55(1):41-52. PubMed ID: 12605458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphology of spiny neurons in the human entorhinal cortex: intracellular filling with lucifer yellow.
    Mikkonen M; Pitkänen A; Soininen H; Alafuzoff I; Miettinen R
    Neuroscience; 2000; 96(3):515-22. PubMed ID: 10717432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prenatal stress and neonatal handling induce sex-specific changes in dendritic complexity and dendritic spine density in hippocampal subregions of prepubertal rats.
    Bock J; Murmu MS; Biala Y; Weinstock M; Braun K
    Neuroscience; 2011 Oct; 193():34-43. PubMed ID: 21807071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Running induces widespread structural alterations in the hippocampus and entorhinal cortex.
    Stranahan AM; Khalil D; Gould E
    Hippocampus; 2007; 17(11):1017-22. PubMed ID: 17636549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epileptiform activity induced by pilocarpine in the rat hippocampal-entorhinal slice preparation.
    Nagao T; Alonso A; Avoli M
    Neuroscience; 1996 May; 72(2):399-408. PubMed ID: 8737410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys.
    Buckmaster PS; Alonso A; Canfield DR; Amaral DG
    J Comp Neurol; 2004 Mar; 470(3):317-29. PubMed ID: 14755519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loss of synapses in the entorhinal-dentate gyrus pathway following repeated induction of electroshock seizures in the rat.
    Cardoso A; Assunção M; Andrade JP; Pereira PA; Madeira MD; Paula-Barbosa MM; Lukoyanov NV
    J Neurosci Res; 2008 Jan; 86(1):71-83. PubMed ID: 17705293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Dendrites of CA2 and CA1 Pyramidal Neurons Differentially Regulate Information Flow in the Cortico-Hippocampal Circuit.
    Srinivas KV; Buss EW; Sun Q; Santoro B; Takahashi H; Nicholson DA; Siegelbaum SA
    J Neurosci; 2017 Mar; 37(12):3276-3293. PubMed ID: 28213444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calretinin is present in non-pyramidal cells of the rat hippocampus--I. A new type of neuron specifically associated with the mossy fibre system.
    Gulyás AI; Miettinen R; Jacobowitz DM; Freund TF
    Neuroscience; 1992; 48(1):1-27. PubMed ID: 1584417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neonatal isolation impairs neurogenesis in the dentate gyrus of the guinea pig.
    Rizzi S; Bianchi P; Guidi S; Ciani E; Bartesaghi R
    Hippocampus; 2007; 17(1):78-91. PubMed ID: 17143902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distribution of calbindin D28k immunoreactive cells and fibers in the monkey hippocampus, subicular complex and entorhinal cortex. A light and electron microscopic study.
    Seress L; Léránth C; Frotscher M
    J Hirnforsch; 1994; 35(4):473-86. PubMed ID: 7884210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.